59 resultados para SSR marker
Resumo:
FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL's prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14-1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07-1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13-1.58, p < 0.001, and HR = 1.25, 95% CI 1.04-1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05-1.65, p = 0.02 and HR = 1.23 95% CI 0.99-1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
Childhood wheezing is common particularly in children under the age of six years and in this age-group is generally referred to as preschool wheezing. Particular diagnostic and treatment uncertainties exist in these young children due to the difficulty in obtaining objective evidence of reversible airways narrowing and inflammation. A diagnosis of asthma depends on the presence of relevant clinical signs and symptoms and the demonstration of reversible airways narrowing on lung function testing, which is difficult to perform in young children. Few treatments are available and inhaled corticosteroids are the recommended preventer treatment in most international asthma guidelines. There is however considerable controversy about its effectiveness in children with preschool wheeze and a corticosteroid responder phenotype has not been established. These diagnostic and treatment uncertainties in conjunction with the knowledge of corticosteroid side-effects, in particular the reduction of growth velocity, has resulted in a variable approach to inhaled corticosteroid prescribing by medical practitioners and a reluctance in carers to regularly administer the treatment. Identifying children who are likely responders to corticosteroid therapy would be a major benefit in the management of this condition. Eosinophils have emerged as a promising biomarker of corticosteroid responsive airways disease and evaluation of this biomarker in sputum has successfully been employed to direct management in adults with asthma. Obtaining sputum from young children is time-consuming and difficult and it is hard to justify more invasive procedures such as a bronchoscopy in young children routinely. Recently, in children, interest has shifted to assessing the value of less invasive biomarkers of likely corticosteroid response and the biomarker 'blood eosinophils' has emerged as an attractive candidate. The aim of this review is to summarise the evidence for blood eosinophils as a predictive biomarker for corticosteroid responsive disease with a particular focus on the difficult area of preschool wheeze.
Resumo:
The synthesis and characterization of 2-dodecylcyclobutanone is described. Solvent extraction techniques for the isolation of this compound from irradiated minced chicken meat and its detection by selected ion monitoring are outlined. The compound was not detected in either raw or cooked nonirradiated minced chicken meat by the methods used, but its presence was confirmed in the irradiated samples. 2-Dodecyclobutanone was detectable for 20 days postirradiation. The dose (4.7 kGy) of irradiation applied was below the recommended upper limit for food (10 kGy), and this compound may have potential as a marker for irradiated chicken meat and for other foods containing lipid.
Resumo:
PURPOSE. Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis. This study investigated whether sclera could act as a surrogate tissue for Raman-based investigation of pathogenic AGEs in Bruch's membrane.
METHODS. Human sclera and Bruch's membrane were dissected from postmortem eyes (n = 67) across a wide age range (33-92 years) and were probed by Raman spectroscopy. The biochemical composition, AGEs, and their age-related trends were determined from data reduction of the Raman spectra and compared for the two tissues.
RESULTS. Raman microscopy demonstrated that Bruch's membrane and sclera are composed of a similar range of biomolecules but with distinct relative quantities, such as in the heme/collagen and the elastin/collagen ratios. Both tissues accumulated AGEs, and these correlated with chronological age (R(2) = 0.824 and R(2) = 0.717 for sclera and Bruch's membrane, respectively). The sclera accumulated AGE adducts at a lower rate than Bruch's membrane, and the models of overall age-related changes exhibited a lower rate (one-fourth that of Bruch's membrane) but a significant increase with age (P <0.05).
CONCLUSIONS. The results suggest that the sclera is a viable surrogate marker for estimating AGE accumulation in Bruch's membrane and for reliably predicting chronological age. These findings also suggest that sclera could be a useful target tissue for future patient-based, Raman spectroscopy studies. (Invest Ophthalmol Vis Sci 2011;52:1593-1598) DOI:10.1167/iovs.10-6554
Resumo:
Chronic lymphocytic leukemia (CLL) follows a variable clinical course which is difficult to predict at diagnosis. We assessed somatic mutation (SHM) status, CD38 and ZAP-70 expression in 87 patients (49 male, 38 female) with stage A CLL and known cytogenetic profile to compare their role in predicting disease progression, which was assessed by the treatment free interval (TFI) from diagnosis. Sixty (69%) patients were SHM+, 24 (28%) were CD38+ and ten (12%) were ZAP-70+. The median TFI for: (i) SHM + versus SHM- patients was 124 versus 26 months; hazard ratio (HR) = 3.6 [95% confidence interval (CI) = 1.8 - 7.3; P = 0.001]: (ii) CD38- versus CD38+ patients was 120 versus 34 months; HR = 2.4 (95% CI = 1.4 - 5.3; P = 0.02); and (iii) ZAP70- versus ZAP70+ was 120 versus 16 months; HR = 3.4 (95% CI = 1.4 - 8.7; P = 0.01). SHM status and CD38 retained prognostic significance on multivariate analysis whereas ZAP-70 did not. We conclude that ZAP-70 analysis does not provide additional prognostic information in this group of patients.
Resumo:
We report the characterization of a new eight-allele microsatellite (D3S621) isolated from a human chromosome 3 library. Two-point and multi-locus genetic linkage analysis have shown D3S621 to co-segregate with the previously mapped RP4 (theta m = 0.12, Zm = 4.34) and with other genetic markers on the long arm of the chromosome, including D3S14 (R208) (theta m = 0.00, Zm = 15.10), D3S47 (C17) (theta m = 0.11, Zm = 4.95), Rho (theta m = 0.07, Zm = 1.37), D3S21 (L182) (theta m = 0.07, Zm = 2.40) and D3S19 (U1) (theta m = 0.13, Zm = 2.78). This highly informative marker, with a polymorphic information content of 0.78, should be of considerable value in the extension of linkage data for autosomal dominant retinitis pigmentosa with respect to locii on the long arm of chromosome 3.
Resumo:
Introduction: Methotrexate (MTX) is a cornerstone of treatment in a wide variety of inflammatory conditions, including juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM). However, owing to its narrow therapeutic index and the considerable interpatient variability in clinical response, monitoring of adherence to MTX is important. The present study demonstrates the feasibility of using methotrexate polyglutamates (MTXPGs) as a biomarker to measure adherence to MTX treatment in children with JIA and JDM.
Methods: Data were collected prospectively from a cohort of 48 children (median age 11.5 years) who received oral or subcutaneous (SC) MTX therapy for JIA or JDM. Dried blood spot samples were obtained from children by finger pick at the clinic or via self- or parent-led sampling at home, and they were analysed to determine the variability in MTXPG concentrations and assess adherence to MTX therapy.
Results: Wide fluctuations in MTXPG total concentrations (>2.0-fold variations) were found in 17 patients receiving stable weekly doses of MTX, which is indicative of nonadherence or partial adherence to MTX therapy. Age (P = 0.026) and route of administration (P = 0.005) were the most important predictors of nonadherence to MTX treatment. In addition, the study showed that MTX dose and route of administration were significantly associated with variations in the distribution of MTXPG subtypes. Higher doses and SC administration of MTX produced higher levels of total MTXPGs and selective accumulation of longer-chain MTXPGs (P < 0.001 and P < 0.0001, respectively).
Conclusions: Nonadherence to MTX therapy is a significant problem in children with JIA and JDM. The present study suggests that patients with inadequate adherence and/or intolerance to oral MTX may benefit from SC administration of the drug. The clinical utility of MTXPG levels to monitor and optimise adherence to MTX in children has been demonstrated.Trial Registration: ISRCTN Registry identifier: ISRCTN93945409 . Registered 2 December 2011.
Resumo:
PURPOSE: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear.
EXPERIMENTAL DESIGN: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models.
RESULTS: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells.
CONCLUSIONS: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230-42. ©2015 AACR.
Resumo:
Cancer is one of the leading causes of death in the world. Despite this, a growing number of people are surviving the disease due to medical advancements and the development of numerous new therapies. Doxorubicin, a chemotherapeutic agent, is a widely-used and successful first-line anti-tumour treatment. However, the established toxic and deleterious effects of the drug on the cardiovascular system confer increased risk of congestive heart failure, thereby necessitating the use of reduced doxorubicin doses. In order to investigate how these events are initiated, mouse cardiomyocytes (HL-1) were treated in vitro with varying concentrations of doxorubicin (0.5-4.0 µmol/L). Following treatment (24h), a marked level of cell death was observed in comparison to untreated cardiomyocytes; the level of death appeared to correlate with the concentration of the drug used. Western blotting revealed the cleavage of full length Poly (ADP-ribose) polymerase (PARP) into 89 and 24kDa fragments, a process which is instrumental in triggering programmed cell death/apoptosis. Importantly, results suggested that this event may be independent of caspase 3 cleavage and thus activation. A number of previous studies have reported a functional role for both Mitofusin-2 (Mfn2) and NADPH oxidase 2 (Nox2) in the cardiotoxic response. Given that PARP cleavage is a validated indicator of cellular apoptosis, these results clearly indicate that this marker could be used in future studies when determining if depletion of the above proteins would cause a reduction in or eradicate the pro-apoptotic action of this agent on cardiomyocytes. Such investigations may lead to significant developments in ensuring that doxorubicin can achieve its full therapeutic anti-tumour potential without causing the subsequent deleterious effects on the cardiovascular system.
Resumo:
This study examines the potential of next-generation sequencing based ‘genotyping-by-sequencing’ (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.
Resumo:
The Colorectal Cancer (CRC) Subtyping Consortium (CRCSC) recently published four consensus molecular subtypes (CMS’s) representing the underlying biology in CRC. The Microsatellite Instable (MSI) immune group, CMS1, has a favorable prognosis in early stage disease, but paradoxically has the worst prognosis following relapse, suggesting the presence of factors enabling neoplastic cells to circumvent this immune response. To identify the genes influencing subsequent poor prognosis in CMS1, we analyzed this subtype, centered on risk of relapse.
In a cohort of early stage colon cancer (n=460), we examined, in silico, changes in gene expression within the CMS1 subtype and demonstrated for the first time the favorable prognostic value of chemokine-like factor (CKLF) gene expression in the adjuvant disease setting [HR=0.18, CI=0.04-0.89]. In addition, using transcription profiles originating from cell sorted CRC tumors, we delineated the source of CKLF transcription within the colorectal tumor microenvironment to the leukocyte component of these tumors. Further to this, we confirmed that CKLF gene expression is confined to distinct immune subsets in whole blood samples and primary cell lines, highlighting CKLF as a potential immune cell-derived factor promoting tumor immune-surveillance of nascent neoplastic cells, particularly in CMS1 tumors. Building on the recently reported CRCSC data, we provide compelling evidence that leukocyte-infiltrate derived CKLF expression is a candidate biomarker of favorable prognosis, specifically in MSI-immune stage II/III disease.
Resumo:
Image guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogenous whole pelvic radiotherapy dose but these are not reliable when using reduced margins, dose escalation or hypo-fractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990's. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aims to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied which resulted in 50 papers being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardisation of all techniques and procedures in relation to the use of prostate FMs is required. Finally a clinical trial investigating a non-surgical alternative to prostate FMS is introduced.