52 resultados para Roofwater harvesting
Resumo:
Globally the amount of installed terrestrial wind power both onshore and offshore has grown rapidly over the last twenty years. Most large onshore and offshore wind turbines are designed to harvest winds within the atmospheric boundary layer, which can be vary variable due to terrain and weather effects. The height of the neutral atmospheric boundary layer is estimated at above 1300m. A relatively new concept is to harvest more consistent wind conditions above the atmospheric boundary layer using high altitude wind harvesting devices such as tethered kites, air foils and dirigible rotors. This paper presents a techno-economic feasibility study of high altitude wind power in Northern Ireland. First this research involved a state of the art review of the resource and the technologies proposed for high altitude wind power. Next the techno-economic analysis involving four steps is presented. In step one, the potential of high altitude wind power in Northern Ireland using online datasets (e.g. Earth System Research Laboratory) is estimated. In step two a map for easier visualisation of geographical limitations (e.g. airports, areas of scenic beauty, flight paths, military training areas, settlements etc.) that could impact on high altitude wind power is developed. In step three the actual feasible resource available is recalculated using the visualisation map to determine the ‘optimal’ high altitude wind power locations in Northern Ireland. In the last step four the list of equipment, resources and budget needed to build a demonstrator is provided in the form of a concise techno-economic appraisal using the findings of the previous three steps.
Resumo:
Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.
Resumo:
Demersal fisheries targeting a few high-value species often catch and discard other "non-target" species. It is difficult to quantify the impact of this incidental mortality when population biomass of a non-target species is unknown. We calculate biomass for 14 demersal fish species in ICES Area VIIg (Celtic Sea) by applying species-and length-based catchability corrections to catch records from the Irish Groundfish Survey (IGFS). We then combine these biomass estimates with records of commercial discards (and landings for marketable non-target species) to calculate annual harvesting rates (HR) for each study species. Uncertainty is incorporated into estimates of both biomass andHR. Our survey-based HR estimates for cod and whiting compared well with HR-converted fishing mortality (F) estimates from analytical assessments for these two stocks. Of the non-target species tested, red gurnard (Chelidonichthys cuculus) recorded some annual HRs greater than those for cod or whiting; challenging "Pope's postulate" that F on non-target stocks in an assemblage will not exceed that on target stocks. We relate HR for each species to two corresponding maximum sustainable yield (MSY) reference levels; six non-target species (including three ray species) show annual HRs >= HRMSY. This result suggests that it may not be possible to conserve vulnerable non-target species when F is coupled to that of target species. Based on biomass, HR, and HRMSY, we estimate "total allowable catch" for each non-target species.
Resumo:
We consider the problem of regulating the rate of harvesting a natural resource, taking account of the wider system represented by a set of ecological and economic indicators, given differing stakeholder priorities. This requires objective and transparent decision making to show how indicators impinge on the resulting regulation decision. We offer a new scheme for combining indicators, derived from assessing the suitability of lowering versus not lowering the harvest rate based on indicator values relative to their predefined reference levels. Using the practical example of fisheries management under an “ecosystem approach,” we demonstrate how different stakeholder views can be quantitatively represented by weighting sets applied to these comparisons. Using the scheme in an analysis of historical data from the Celtic Sea fisheries, we find great scope for negotiating agreement among disparate stakeholders.
Resumo:
An ultrathin layer of metasurface that almost completely annihilates the reflection of light (>99.5%) over a wide range of incident angles (>80°) is experimentally demonstrated. Such zero-reflectance metafilms exhibit optimal performance for plasmonic sensing, since their sensitivity to changes of local refractive index is far superior to films of nonzero reflectance. Since both main detection mechanisms tracking intensity changes and wavelength shifts are improved, zero-reflectance metafilms are optimal for localized surface plasmon resonance molecular sensing. Such nanostructures have significant opportunities in many areas, including enhanced light harvesting as well as in developing high-performance molecular sensors for a wide range of chemical and biomedical applications.
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.