49 resultados para Repetitive Sequences
Resumo:
Policymakers have largely replaced Single Bounded Discrete Choice (SBDC) valuation by the more statistically efficient repetitive methods; Double Bounded Discrete Choice (DBDC) and Discrete Choice Experiments (DCE) . Repetitive valuation permits classification into rational preferences: (i) a priori well-formed; (ii) consistent non-arbitrary values “discovered” through repetition and experience; (Plott, 1996; List 2003) and irrational preferences; (iii) consistent but arbitrary values as “shaped” by preceding bid level (Tufano, 2010; Ariely et al., 2003) and (iv) inconsistent and arbitrary values. Policy valuations should demonstrate behaviorally rational preferences. We outline novel methods for testing this in DBDC applied to renewable energy premiums in Chile.
Resumo:
Loss of species will directly change the structure and potentially the dynamics of ecological communities, which in turn may lead to additional species loss (secondary extinctions) due to direct and/or indirect effects (e.g. loss of resources or altered population dynamics). Furthermore, the vulnerability of food webs to repeated species loss is expected to be affected by food web topology, species interactions, as well as the order in which species go extinct. Species traits such as body size, abundance and connectivity might determine a species' vulnerability to extinction and, thus, the order in which species go primarily extinct. Yet, the sequence of primary extinctions, and their effects on the vulnerability of food webs to secondary extinctions, when species abundances are allowed to respond dynamically, has only recently become the focus of attention. Here, we analyse and compare topological and dynamical robustness to secondary extinctions of model food webs, in the face of 34 extinction sequences based on species traits. Although secondary extinctions are frequent in the dynamical approach and rare in the topological approach, topological and dynamical robustness tends to be correlated for many bottom-up directed, but not for top-down directed deletion sequences. Furthermore, removing species based on traits that are strongly positively correlated to the trophic position of species (such as large body size, low abundance, high net effect) is, under the dynamical approach, found to be as destructive as removing primary producers. Such top-down oriented removal of species are often considered to correspond to realistic extinction scenarios, but earlier studies, based on topological approaches, have found such extinction sequences to have only moderate effects on the remaining community. Thus, our result suggests that the structure of ecological communities, and therefore the integrity of important ecosystem processes could be more vulnerable to realistic extinction sequences than previously believed.
Resumo:
Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.