50 resultados para Relativistic mean-field theories


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the impact of age, various forms of cataract, and visual acuity on whole-field scotopic sensitivity screening for glaucoma in a rural population. DESIGN: Clinic-based study with population-based recruitment. SETTING: Jin Shan Township near Taipei, Taiwan. SUBJECTS: Three hundred forty-six residents (ages, > or = 40 years) of Jin Shan Township. INTERVENTIONS: Whole-field scotopic testing, ophthalmoscopy with dilation of the pupils, cataract grading against photographic standards, and screening visual field testing in a random one-third subsample. MAIN OUTCOME MEASURES: Whole-field scotopic sensitivity (in decibels) and diagnostic status as a case of glaucoma, glaucoma suspect, or normal. RESULTS: Participants in Jin Shan Township did not differ significantly in the rate of blindness, low visual acuity, or family history of glaucoma from a random sample of nonrespondents. Scotopic sensitivity testing detected 100% (6/6) of subjects with open-angle glaucoma at a specificity of 80.2%. The mean +/- SE scotopic sensitivity for six subjects with open-angle glaucoma (32.78 +/- 1.51 dB) differed significantly from that of 315 normal individuals (38.51 +/- 0.22 dB), when adjusted for age and visual acuity (P = .05, t test). With linear regression modeling, factors that correlated significantly with scotopic sensitivity were intraocular pressure, screening visual field, best corrected visual acuity, presence of cortical cataract, and increasing age. CONCLUSIONS: Although cataract affects the whole-field scotopic threshold, it appears that scotopic testing may be of value in field-based screening for glaucoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.