212 resultados para Rectangular microstrip patch antenna
Resumo:
Power deposition in the head of a user wearing metal-framed spectacles was calculated with a 450 MHz personal radio transmitting in close proximity. Peak tissue SAR in the head depended on lens shape whether circular half-rim or rectangular with 70 and 174% increases, respectively, compared to the spectacle-free case. However, localised screening occurred with square frames, with a 40% reduction of peak SAR in the eye closest to the antenna.
Resumo:
A printed rcflectarray antenna, which generates a beam that can be electronically switched from a sum to a difference radiation pattern, is presented. This is achieved by applying a bias voltage of 20 V to one-half of the aperture, which is constructed above a 500 mu m cavity containing liquid crystals. Simulated results are shown to be in good agreement with measurements at X-band.
Resumo:
We show that by introducing a gap at the center of the helical sections (where the current is minimum) of a lambda/2 quadrifilar helix antenna (QHA) and varying the axial length and radial gap between the overlapping volutes, the antenna gives a 28% impedance bandwidth which is nine times the bandwidth of a conventional QHA. A 16% bandwidth with a front to back ratio of >= 14 dB is achievable with 5-14% reduction in the size of the QHA. The structure can yield a monopole radiation pattern suitable for terrestrial applications or a hemispherical pattern suitable for satellite use. The simulation results are validated by measurements at L-band.
Resumo:
A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.
Resumo:
It is shown that a side-fed bifilar helix antenna with a single feed, can generate a slant 451 linearly polarized onmidirectional toroidal pattern. The antenna has a low profile and does not require a ground plane. The bifilar helix antenna provides slant 45 degrees polarization over a solid angle of almost 4 pi steradians as compared to a crossed dipole which generates a tilted 45 degrees linearly, polarized pattern only over a solid angle of 1.14 pi steradians. The computed results are validated by experimental data.
Resumo:
The impedance and radiation pattern parameters of a lambda/2 quadrifilar helix antenna (QHA) with turn angles in the range 0 degrees to 235 degrees are analyzed. It is shown that by selecting the helix turn angle to satisfy the minimum bandwidth and beamwidth requirements, an improved electrical performance and a reduction in the physical size of the antenna is obtained. This is demonstrated by comparing the performance of a conventional half turn QHA with structures having a smaller pitch length. The computed results are validated by experimental data at L-band.
Resumo:
Numerical and measured results are employed at X-band to demonstrate that the electrical properties ofnematic state liquid crystal can be exploited to produce phase shifters for beam scanning printed reflectarray antennas with a tunable range greater than 180'.
Resumo:
A side-fed bifilar is shown to generate a similar radiation pattern as a dipole antenna, but the structure has a significantly reduced axial length. Simulated and measured results show that the helix turn angle can be used to control the ratio of the orthogonal linear field components and the input impedance.
Resumo:
Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.
Resumo:
Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.
Resumo:
This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.