66 resultados para Rearrangement.
Resumo:
Introduction: Detection of the ALK rearrangement in a solid tumor gives these patients the option of crizotinib as an oral form of anticancer treatment. The current test of choice is fluorescence in situ hybridization (FISH), but various cheaper and more convenient immunohistochemical (IHC) assays have been proposed as alternatives.
Methods: Fifteen FISH-positive cases from patients, seven with data on crizotinib therapy and clinical response, were evaluated for the presence of ALK protein using three different commercially available antibodies: D5F3, using the proprietary automated system (Ventana), ALK1 (Dako), and 5A4 (Abcam). A further 14 FISH-negative and three uncertain (<15% rearrangement detected) cases were also retrieved. Of the total 32 specimens, 17 were excisions and 15 were computed tomography-guided biopsies or cytological specimens. All three antibodies were applied to all cases. Antibodies were semiquantitatively scored on intensity, and the proportion of malignant cells stained was documented. Cutoffs were set by receiver operating curve analysis for positivity to optimize correct classification.
Results: All three IHC assays were 100% specific but sensitivity did vary: D5F3 86%, ALK 79%, 5A4 71%. Intensity was the most discriminating measure overall, with a combination of proportion and intensity not improving the test. No FISH-negative IHC-positive cases were seen. Two FISH-positive cases were negative with all three IHC assays. One of these had been treated with crizotinib and had failed to show clinical response. The other harbored a second driving mutation in the EGFR gene.
Conclusions: IHC with all three antibodies is especially highly specific (100%) although variably sensitive (71%-86%), specifically in cases with scanty material. D5F3 assay was most sensitive in these latter cases. Occasional cases are IHC-positive but FISH-negative, suggesting either inaccuracy of one assay or occasional tumors with ALK rearrangement that do not express high levels of ALK protein.
Resumo:
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.
Resumo:
PCR-based immunoglobulin (Ig)/T-cell receptor (TCR) clonality testing in suspected lymphoproliferations has largely been standardized and has consequently become technically feasible in a routine diagnostic setting. Standardization of the pre-analytical and post-analytical phases is now essential to prevent misinterpretation and incorrect conclusions derived from clonality data. As clonality testing is not a quantitative assay, but rather concerns recognition of molecular patterns, guidelines for reliable interpretation and reporting are mandatory. Here, the EuroClonality (BIOMED-2) consortium summarizes important pre- and post-analytical aspects of clonality testing, provides guidelines for interpretation of clonality testing results, and presents a uniform way to report the results of the Ig/TCR assays. Starting from an immunobiological concept, two levels to report Ig/TCR profiles are discerned: the technical description of individual (multiplex) PCR reactions and the overall molecular conclusion for B and T cells. Collectively, the EuroClonality (BIOMED-2) guidelines and consensus reporting system should help to improve the general performance level of clonality assessment and interpretation, which will directly impact on routine clinical management (standardized best-practice) in patients with suspected lymphoproliferations.
Resumo:
We performed an immunogenetic analysis of 345 IGHV-IGHD-IGHJ rearrangements from 337 cases with primary splenic small B-cell lymphomas of marginal-zone origin. Three immunoglobulin (IG) heavy variable (IGHV) genes accounted for 45.8% of the cases (IGHV1-2, 24.9%; IGHV4-34, 12.8%; IGHV3-23, 8.1%). Particularly for the IGHV1-2 gene, strong biases were evident regarding utilization of different alleles, with 79/86 rearrangements (92%) using allele (*)04. Among cases more stringently classified as splenic marginal-zone lymphoma (SMZL) thanks to the availability of splenic histopathological specimens, the frequency of IGHV1-2(*)04 peaked at 31%. The IGHV1-2(*)04 rearrangements carried significantly longer complementarity-determining region-3 (CDR3) than all other cases and showed biased IGHD gene usage, leading to CDR3s with common motifs. The great majority of analyzed rearrangements (299/345, 86.7%) carried IGHV genes with some impact of somatic hypermutation, from minimal to pronounced. Noticeably, 75/79 (95%) IGHV1-2(*)04 rearrangements were mutated; however, they mostly (56/75 cases; 74.6%) carried few mutations (97-99.9% germline identity) of conservative nature and restricted distribution. These distinctive features of the IG receptors indicate selection by (super)antigenic element(s) in the pathogenesis of SMZL. Furthermore, they raise the possibility that certain SMZL subtypes could derive from progenitor populations adapted to particular antigenic challenges through selection of VH domain specificities, in particular the IGHV1-2(*)04 allele.
Resumo:
BACKGROUND: ALK rearrangement is particularly observed in signet-ring sub-type adenocarcinoma. Since fluorescence in situ hybridization (FISH) is not suitable for mass screening, we aimed to characterize the predictive utility of tumour morphology and ALK immunoreactivity to identify ALK rearrangement, in a primary lung adenocarcinoma dataset enriched for signet-ring morphology, compared with that of other morphology. METHODS: 7 adenocarcinomas from diagnostic archives reported with signet-ring morphology were assessed and compared with 11 adenocarcinomas without signet-ring features over the same time period. Growth patterns were reviewed, ALK expression was assessed by standard immunohistochemistry using ALK1 clone and Envision detection (Dako), and ALK rearrangement was assessed by FISH (Abbott Molecular). Associations between groups and predictive utility of tumour morphology and ALK expression using FISH as gold standard were calculated. RESULTS: 2 excision lung biopsy cases with pure (100%) signet-ring morphology and solid patterns demonstrated diffuse moderate cytoplasmic ALK immunoreactivity (2+) and harboured ALK rearrangements (p=0.007), unlike 5 mixed-signet-ring and 11 non-signet-ring adenocarcinomas, which showed negative or 1+ immunoreactivity; and did not harbour ALK rearrangements (p>0.1). ALK expression was not associated with ALK copy number. 6 of 7 cases with signet ring morphology stained for TTF-1. Pure signet-ring morphology and moderate ALK expression were both associated with ALK rearranged tumours. CONCLUSION: ALK rearrangement is strongly associated with ALK immunoreactivity, and was seen only in tumours with pure signet-ring morphology and solid growth pattern. Tumour morphology, growth pattern and ALK immunoreactivity appear to be good indicators of ALK rearrangement, with TTF-1 positivity aiding in proving primary pulmonary origin.
Resumo:
We present clinicopathologic data on 10 pulmonary myxoid sarcomas, which are defined by distinctive histomorphologic features and characterized by a recurrent fusion gene, that appear to represent a distinct tumor entity at this site. The patients [7 female, 3 male; aged 27 to 67 y (mean, 45 y)] presented with local or systemic symptoms (n=5), symptoms from cerebral metastasis (1), or incidentally (2). Follow-up of 6 patients showed that 1 with brain metastasis died shortly after primary tumor resection, 1 developed a renal metastasis but is alive and well, and 4 are disease free after 1 to 15 years. All tumors involved pulmonary parenchyma, with a predominant endobronchial component in 8 and ranged from 1.5 to 4 cm. Microscopically, they were lobulated and composed of cords of polygonal, spindle, or stellate cells within myxoid stroma, morphologically reminiscent of extraskeletal myxoid chondrosarcoma. Four cases showed no or minimal atypia, 6 showed focal pleomorphism, and 5 had necrosis. Mitotic indices varied, with most tumors not exceeding 5/10 high-power fields. Tumors were immunoreactive for only vimentin and weakly focal for epithelial membrane antigen. Of 9 tumors, 7 were shown to harbor a specific EWSR1-CREB1 fusion by reverse transcription-polymerase chain reaction and direct sequencing, with 7 of 10 showing EWSR1 rearrangement by fluorescence in situ hybridization. This gene fusion has been described previously in 2 histologically and behaviorally different sarcomas: clear cell sarcoma-like tumors of the gastrointestinal tract and angiomatoid fibrous histiocytomas; however, this is a novel finding in tumors with the morphology we describe and that occur in the pulmonary region.
A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value.
Resumo:
To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.
Resumo:
The ability to rearrange the germ-line DNA to generate antibody diversity is an essential prerequisite for the production of a functional repertoire. While this is essential to prevent infections, it also represents the "Achilles heel" of the B-cell lineage, occasionally leading to malignant transformation of these cells by translocation of protooncogenes into the immunoglobulin (Ig) loci. However, in evolutionary terms this is a small price to pay for a functional immune system. The study of the configuration and rearrangements of the Ig gene loci has contributed extensively to our understanding of the natural history of development of myeloma. In addition to this, the analysis of Ig gene rearrangements in B-cell neoplasms provides information about the clonal origin of the disease, prognosis, as well as providing a clinical useful tool for clonality detection and minimal residual disease monitoring. Herein, we review the data currently available on both Ig gene rearrangements and protein patterns seen in myeloma with the aim of illustrating how this knowledge has contributed to our understanding of the pathobiology of myeloma.
Resumo:
PURPOSE: We analyzed patients with hairy cell leukemia (HCL) to achieve a better understanding of the differentiation stage reached by HCL cells and to define the key role of the diversification of cell surface makers, especially CD25 expression. PATIENTS AND METHODS: We analyzed 38 previously untreated patients with HCL to characterize their complete (VDJ(H)) and incomplete (DJ(H)) immunoglobulin (Ig) heavy chain (IgH) rearrangements, including somatic hypermutation pattern and gene segment use. RESULTS: A correlation between immunophenotypic profile and molecular data was seen. All 38 cases showed monoclonal amplifications: VDJ(H) in 97%, DJ(H) in 42%, and both in 39%. Segments from the D(H)3 family were used more in complete compared with incomplete rearrangements (45% vs. 12%; P <.005). Furthermore, comparison between molecular and immunophenotypic characteristics disclosed differences in the expression of CD25 antigen; CD25(-) cases, a phenotype associated with HCL variant, showed complete homology to the germline in 3 of 5 cases (60%), whereas this characteristic was never observed in CD25(+) cases (P <.005). Moreover, V(H)4-34, V(H)1-08, and J(H)3 segments appeared in 2, 1, and 2 CD25(-) cases, respectively, whereas they were absent in all CD25(+) cases. CONCLUSION: These results support that HCL is a heterogeneous entity including subgroups with different molecular characteristics, which reinforces the need for additional studies with a larger number of patients to clarify the real role of gene rearrangements in HCL.
Resumo:
BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.
Resumo:
In this study, we used IGH sequence analysis to assess the maturational status of Waldenstrom's (WM) macroglobulinemia and its putative precursor immunoglobulin (Ig)-M monoclonal gammopathy of undetermined significance (MGUS). IGH sequence analysis was performed using standard methods in 23 cases (20 WM and 3 IgM MGUS as defined by consensus panel criteria). Waldenstrom's macroglobulinemia cases were characterized by heavily mutated IGH genes (median, 6.3%; range, 3.8%-13.9%) but without intraclonal variation (ICV). IgM MGUS was similarly characterized by somatic hypermutation (median, 7.5%; range, 7%-7.7%), but ICV was evident in 1 of the 3 cases. We would therefore conclude that WM is characterized by somatic hypermutation without ICV, which supports a derivation from postgerminal center/memory B cells. IgM MGUS is also characterized by somatic hypermutation but, in a manner similar to IgA/IgG MGUS, can be associated with ICV, although the significance of this remains unclear.
Resumo:
BACKGROUND AND OBJECTIVES: Analysis of IgH rearrangements in B-cell malignancies has provided clinical researchers with a wide range of information during the last few years. However, only a few studies have contributed to the characterization of these features in multiple myeloma (MM), and they have been focused on the analysis of the expressed IgH allele only. Comparison between the expressed and the non-functional IgH alleles allows further characterizion of the selection processes to which pre-myeloma cells are submitted. DESIGN AND METHODS: We analyzed a cohort of 84 untreated MM patients in order to characterize their functional VDJH and non-functional DJH rearrangements. The pattern of mutations and gene segment usage for both types of rearrangements was analyzed by polymerase chain reaction and sequencing. RESULTS: VH3 and VH1 family members were over- and under-represented, respectively. VH3-30 and VH3-15 segments were the most frequently used, whereas VH4-34 was found only in non-functional or heavily mutated VDJH rearrangements. DH2 and DH3 family members were over-represented in both VDJH and DJH repertoires, while the DH1 family was under-represented only in the productive VDJH rearrangements. Finally, DH3-22 and DH2-21 gene segments were found to be over-represented in the functional repertoire while segments commonly used by less mature B-cell malignancies, such as DH6-19 or DH3-3, were under-represented. INTERPRETATION AND CONCLUSIONS: Data reported here help to identify the clonogenic MM cell as a post-germinal center B cell that has undergone selection processes during the germinal center reaction.
Resumo:
Analysis of Ig genes in B-cell malignancies has become an essential method in molecular diagnosis, and polymerase chain reaction (PCR) amplification of Ig heavy chain gene (IgH) rearrangements is now widely used for detection of clonality and minimal residual disease (MRD). Although several different sensitive protocols are now available for PCR analysis of IgH genes, they are frequently hampered owing to the high rate of somatic hypermutation present in multiple myeloma (MM). We recently described a new approach using incomplete DJH rearrangements as an alternative target. About 60% of MM samples contain an incomplete DJH rearrangement, 90% of them lacking on somatic mutations. This approach allows resolution of problems derived from primer mismatches, making DJH rearrangement a reliable and sensitive target for detection of clonality and MRD investigation in MM.
Resumo:
In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH-JH, two DH-JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH-JH and DH-JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRgammadelta(+) T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.
Resumo:
DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.