64 resultados para Radiotherapy, High energy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Xe ions, Xe L–XLVI. For the calculations, a fully relativistic grasp code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125, 236, 272, 226, and 113 levels of Xe L, Xe XLIX, Xe XLVIII, Xe XLVII, and Xe XLVI, respectively, belonging to the n ⩽ 3 configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electron energy probability functions measured with a passively compensated Langmuir probe in asymmetric capacitively coupled hydrogen and deuterium plasmas exhibit structure. The otherwise relatively continuous distribution appears to have an abrupt peak in electron density near 5 eV. This structure occurs at a higher energy in deuterium than hydrogen and there is a correlation between floating potential and the voltage at which the structure is observed in the second derivative of the I(V) characteristic. While the cause of the structure has yet to be clarified, spectroscopic observations and computer-based hydrogen models indicate that the high energy tail of the distribution is strongly modulated during the radio frequency cycle. The effect of this modulation on plasma properties and probe measurements has yet to be explored. (C) 1999 American Institute of Physics. [S0003-6951(99)00819-0].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets. © 2012 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An ultra-relativistic electron beam propagating through a high-Z solid triggersan electromagnetic cascade, whereby a large number of high-energy photons andelectron–positron pairs are produced mainly via the bremsstrahlung and Bethe–Heitler processes, respectively. These mechanisms are routinely used to generatepositron beams in conventional accelerators such as the electron–positron collider(LEP). Here we show that the application of similar physical mechanisms to a laserdrivenelectron source allows for the generation of high-quality positron beams in amuch more compact and cheaper configuration. We anticipate that the applicationof these results to the next generation of lasers might open the pathway for therealization of an all-optical high-energy electron–positron collider.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.

Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (grasp) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (fac), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ~98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e.E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ~43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21≤Z≤28. The General-Purpose Relativistic Atomic Structure Package is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code is used. Oscillator strengths, radiative rates, and line strengths are listed for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are given over a wide temperature range up to 107.8 K. Additionally, lifetimes are listed for all calculated levels of these ions. Finally, extensive comparisons are made with results available in the literature, as well as with our analogous calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12≤Z≤20. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are reported over a wide temperature range up to 107.4 K. Additionally, lifetimes are also listed for all calculated levels of the ions. Finally, extensive comparisons are made with results available in the literature, as well as with our parallel calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the reported results.