79 resultados para Radar simulators
Resumo:
Ground-penetrating radar (GPR) is a rapid geophysical technique that we have used to assess four illegally buried waste locations in Northern Ireland. GPR allowed informed positioning of the less-rapid, if more accurate use of electrical resistivity imaging (ERI). In conductive waste, GPR signal loss can be used to map the areal extent of waste, allowing ERI survey lines to be positioned. In less conductive waste the geometry of the burial can be ascertained from GPR alone, allowing rapid assessment. In both circumstances, the conjunctive use of GPR and ERI is considered best practice for cross-validation of results and enhancing data interpretation.
Resumo:
A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.
Resumo:
Geophysics may assist scent dogs and divers in the search of water bodies for human and animal remains, contraband, weapons and explosives by surveying large areas rapidly and identifying targets or environmental hazards. The most commonly applied methods are described and evaluated for forensic searches. Seismic reflection or refraction and CHIRPS are useful for deep, openwater bodies and identifying large targets, yet limited in streams and ponds. The use of ground penetrating radar (GPR) onwater(WPR) is of limited use in deepwaters (over 20 m) but is advantageous in the search for non-metallic targets in small ditches and ponds. Largemetal or metal-bearing targets can be successfully imaged in deep waters by using towfish magnetometers: in shallow waters such a towfish cannot be used, so a non-metalliferous boat can carry a terrestrial magnetometer. Each device has its uses, depending on the target and location: unknown target make-up (e.g. a homicide victimwith or without a metal object) may be best located using a range ofmethods (the multi-proxy approach), depending on water depth. Geophysics may not definitively find the target, but can provide areas for elimination and detailed search by dogs and divers, saving time and effort.
Resumo:
Apparatus for scanning a moving object includes a visible waveband sensor oriented to collect a series of images of the object as it passes through a field of view. An image processor uses the series of images to form a composite image. The image processor stores image pixel data for a current image and predecessor image in the series. It uses information in the current image and its predecessor to analyse images and derive likelihood measures indicating probabilities that current image pixels correspond to parts of the object. The image processor estimates motion between the current image and its predecessor from likelihood weighted pixels. It generates the composite image from frames positioned according to respective estimates of object image motion. Image motion may alternatively be detected be a speed sensor such as Doppler radar sensing object motion directly and providing image timing signals
Resumo:
A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.
Resumo:
A bit level systolic array for computing the convolution operation is described. The circuit in question is highly regular and ideally suited to VLSI chip design. It is also optimized in the sense that all the cells contribute to the computation on each clock cycle. This makes the array almost four times more efficient than one which was previously described.
Resumo:
A bit level systolic array system is proposed for the Winograd Fourier transform algorithm. The design uses bit-serial arithmetic and, in common with other systolic arrays, features nearest-neighbor interconnections, regularity and high throughput. The short interconnections in this method contrast favorably with the long interconnections between butterflies required in the FFT. The structure is well suited to VLSI implementations. It is demonstrated how long transforms can be implemented with components designed to perform a short length transform. These components build into longer transforms preserving the regularity and structure of the short length transform design.
Resumo:
An overview is given of a systolic VLSI compiler (SVC) tool currently under development for the automated design of high performance digital signal processing (DSP) chips. Attention is focused on the design of systolic vector quantization chips for use in both speech and image coding systems. The software in question consists of a cell library, silicon assemblers, simulators, test pattern generators, and a specially designed graphics shell interface which makes it expandable and user friendly. It allows very high performance digital coding systems to be rapidly designed in VLSI.
Resumo:
There has been significant interest in retrodirective antennas, especially considering the wealth of applications that could be significantly enhanced, or created, by the use of such technology. There is enormous potential for retrodirective antennas where complicated automatic tracking systems would benefit from being replaced by much simpler systems. Retrodirective array technology offers one solution pathway since it can offer extremely fast tracking with relatively simple circuitry. Retrodirective or self-steering arrays are suited for low radio frequency (RF) power mobile terminal use particularly on or between un-stabilised vehicles. In this type of operational scenario, high degrees of relative movement are expected, and power consumption and weight of the antenna must be kept to a minimum. In this study, the authors give a brief historical review of basic retrodirective technology and elaborate on some recent developments at Queens University of Belfast associated with retrodirective antenna technology in relation to, two-way communications, ultrafast RADAR, microwave imaging, spatial power transmission, mitigation of multipath effects and spatial encryption.
Resumo:
An electronically reconfigurable Rotman lens is described which generates multiple beams that can be switched from monopulse sum to difference radiation patterns when used in conjunction with a six element Vivaldi antenna array. This is achieved by exploiting the voltage-dependent dielectric anisotropy property of nematic state liquid crystals to provide switched 0 degrees and 180 degrees phase shifts in the array feed lines. The viability of the concept is demonstrated by designing an antenna which exhibits dynamically reconfigurable monopulse radiation patterns over the frequency band 6-10 GHz. Measured and simulated results are shown to be in good agreement. (c) 2013 Wiley Periodicals, Inc.
Resumo:
This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.
Resumo:
Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.
Resumo:
Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.
Resumo:
The burial of objects (human remains, explosives, weapons) below or behind concrete, brick, plaster or tiling may be associated with serious crime and are difficult locations to search. These are quite common forensic search scenarios but little has been published on them to-date. Most documented discoveries are accidental or from suspect/witness testimony. The problem in locating such hidden objects means a random or chance-based approach is not advisable. A preliminary strategy is presented here, based on previous studies, augmented by primary research where new technology or applications are required. This blend allows a rudimentary search workflow, from remote desktop study, to non-destructive investigation through to recommendations as to how the above may inform excavation, demonstrated here with a case study from a homicide investigation. Published case studies on the search for human remains demonstrate the problems encountered when trying to find and recover sealed-in and sealed over locations. Established methods include desktop study, photography, geophysics and search dogs:these are integrated with new technology (LiDAR and laser scanning; photographic rectification; close quarter aerial imagery; ground-penetrating radar on walls and gamma-ray/neutron activation radiography) to propose this possible search strategy.