55 resultados para Radar in navigation.
Resumo:
Overwintering diving ducks at Lough Neagh have declined dramatically in recent years, but it has been suggested that on-to-offshore redistribution may have led to an underestimate of numbers. Most species feed nocturnally and their distribution at night is unknown. We used radar and visual observations from on board commercial sand barges to determine the diurnal distribution of diving duck flocks in an effort to assess the feasibility of using standard
boat-mounted radar to describe their nocturnal feeding distribution. Sand barge radar was poor in identifying flocks compared to independent visual observations as it was sensitive to interference by waves during windy conditions. However, visual observations were useful in describing diurnal distribution. Sand barges were on average 1.5km from shore when a flock of diving ducks was observed and the probability of detection declined with distance from shore. This supports the reliability of shore-based counts in monitoring and surveillance. Given the poor performance of commercially available boatmounted radar systems, we recommend the use of specialised terrestrial Bird Detecting Radar to determine the movements of diving ducks at Lough Neagh.
Resumo:
A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect.
Resumo:
High-resolution imaging of a dipole source in stratified medium based on negative refraction is presented in this paper. Compensation of the material parameter contrast at the stratified media interface is achieved using a gradient phase profiled conjugating lens (GPCL). It is shown both analytically and numerically that the phase gradient applied across the GPCL positioned at the interface of vertically stratified media enables a high-quality image of a dipole source in a mirror symmetric position with respect to the lens plane. The analytical closed form expression of the phase gradient function is derived using Huygens-Kirchhoff principle. The result is applicable to media with arbitrary stratification and material parameters, including lossy materials. The mechanism for formation of the dipole image in the stratified medium and aberration due to the dielectric contrast at the interface, particularly electromagnetic loss, is discussed in detail. The efficacy of gradient phase and amplitude aberration compensations mechanisms available through the GPCL is articulated. The results of the study are of importance in a wide range of imaging problems in stratified media for medical, civil, and military applications.
Resumo:
Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.
Resumo:
The papers in this special issue focus on the topic of location awareness for radio and networks. Localization-awareness using radio signals stands to revolutionize the fields of navigation and communication engineering. It can be utilized to great effect in the next generation of cellular networks, mining applications, health-care monitoring, transportation and intelligent highways, multi-robot applications, first responders operations, military applications, factory automation, building and environmental controls, cognitive wireless networks, commercial and social network applications, and smart spaces. A multitude of technologies can be used in location-aware radios and networks, including GNSS, RFID, cellular, UWB, WLAN, Bluetooth, cooperative localization, indoor GPS, device-free localization, IR, Radar, and UHF. The performances of these technologies are measured by their accuracy, precision, complexity, robustness, scalability, and cost. Given the many application scenarios across different disciplines, there is a clear need for a broad, up-to-date and cogent treatment of radio-based location awareness. This special issue aims to provide a comprehensive overview of the state-of-the-art in technology, regulation, and theory. It also presents a holistic view of research challenges and opportunities in the emerging areas of localization.
Resumo:
This paper reports a new method for reducing theRadar Cross-Section (RCS) of a metal backed dipole antenna. Numerical simulations are used to show that when the Perfect Electrical Conductor (PEC) is replaced by a carefully designedFrequency Selective Surface (FSS), the electromagnetic performanceof the antenna is similar in band, but the RCS of the structure is significantly lower out of band. The design of the FSSand the return loss, radiation patterns and RCS are presentedfor an antenna which operates at a center frequency of 4 GHzand the results are compared with a conventional metal backed arrangement
Resumo:
Accumulating evidence that working memory supports the ability to follow instructions has so far been restricted to experimental paradigms that have greatly simplified the practical demands of performing actions to instructions in everyday tasks. The aim of the present study was to investigate whether working memory is involved in maintaining information over the longer periods of time that are more typical of everyday situations that require performing instructions to command. Forty-two children 7–11 years of age completed assessments of working memory, a real-world following-instructions task employing 3-D objects, and two new computerized instruction-following tasks involving navigation around a virtual school to complete a sequence of practical spoken commands. One task involved performing actions in a single classroom, and the other, performing actions in multiple locations in a virtual school building. Verbal working memory was closely linked with all three following-instructions paradigms, but with greater association to the virtual than to the real-world tasks. These results indicate that verbal working memory plays a key role in following instructions over extended periods of activity.
Resumo:
This paper presents an approach to COLREGs compliant ship navigation. A system architecture is proposed, which will be implemented and tested on two platforms: networked bridge simulators and at sea trials using an autonomous unmanned surface vessel. Attention is paid to collision avoidance software and its risk mitigation.