214 resultados para Printed strip monopole antenna
Resumo:
In this communication we present a novel polarization-agile microstrip antenna design. To dynamically change the polarization state, the radiating patch is fed by a tunable quasi-lumped coupler. The whole structure can be dynamically altered to radiate electromagnetic waves with vertical linear, horizontal linear, right-handed circular or left-handed circular polarization simply by changing the operating mode of the quasi-lumped coupler. Due to its topology the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry: no additional capacitors or inductors are required. A prototype is fabricated with a 0.762-mm-thick upper layer substrate for the radiating element and a 0.130-mm-thick layer substrate for the coupler circuit, both with the same dielectric material relative permittivity of 2.22. The simulated and measured scattering parameters, the axial ratio in circular radiation-mode and the cross-polarization level in linear mode, the gain and the radiation patterns are presented. The agile polarization capabilities of this new antenna, as demonstrated in this communication, underscore its suitability for modern wireless communications in a multi-path propagation environment.
Resumo:
In this paper, we verify a new phase conjugating architecture suitable for deployment as (lie core building block in retrodirective antenna arrays, which can be scaled to any number of elements in a modular way without impacting on complexity. Our solution is based on a modified in-phase and quadrature modulator architecture, which completely resolves four major shortcomings of the conventional mixer-based approach currently used for the synthesis of phase conjugated energy derived from a sampled incoming wavefront. 1) The architecture presented removes the need for a local oscillator running at twice the RF signal frequency to be conjugated. 2) It maintains a constant transmit power even if receive power goes as low as -120 dBm. 3) All unwanted re-transmit signal products are suppressed by at least 40 dB. 4) The issue of poor RF-IF leakage prevalent in mixer-based phase-conjugation solutions is completely mitigated. The circuit has also been shown to have high conjugation accuracy (better than +/-1 degrees at -60-dBm input). Near theoretically perfect experimental monostatic and bistatic results are presented for a ten-element retrodirective array constructed using the new phase conjugation architecture.
Resumo:
This paper presents a systematic measurement campaign of diversity reception techniques for use in multiple-antenna wearable systems operating at 868 MHz. The experiments were performed using six time-synchronized bodyworn receivers and considered mobile off-body communications in an anechoic chamber, open office area and a hallway. The cross-correlation coefficient between the signal fading measured by bodyworn receivers was dependent upon the local environment and typically below 0.7. All received signal envelopes were combined in post-processing to study the potential benefits of implementing receiver diversity based upon selection combination, equal-gain and maximal-ratio combining. It is shown that, in an open office area, the 5.7 dB diversity gain obtained using a dual-branch bodyworn maximal-ratio diversity system may be further improved to 11.1 dB if a six-branch system was used. First-and second-order theoretical equations for diversity reception techniques operating in Nakagami fading conditions were used to model the postdetection combined envelopes. Maximum likelihood estimates of the Nakagami-parameter suggest that the fading conditions encountered in this study were generally less severe than Rayleigh. The paper also describes an algorithm that may be used to simulate the measured output of an M-branch diversity combiner operating in independent and identically-distributed Nakagami fading environments.
Resumo:
The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.
Resumo:
In this paper, an analysis of radio channel characteristics for single- and multiple-antenna bodyworn systems for use in body-to-body communications is presented. The work was based on an extensive measurement campaign conducted at 2.45 GHz representative of an indoor sweep and search scenario for fire and rescue personnel. Using maximum-likelihood estimation in conjunction with the Akaike information criterion (AIC), five candidate probability distributions were investigated and from these the kappa - mu distribution was found to best describe small-scale fading observed in the body-to-body channels. Additional channel parameters such as autocorrelation and the cross-correlation coefficient between fading signal envelopes were also analyzed. Low cross correlation and small differences in mean signal levels between potential dual-branch diversity receivers suggested that the prospect of successfully implementing diversity in this type application is extremely good. Moreover, using selection combination, maximal ratio, and equal gain combining, up to 8.69-dB diversity gain can be made available when four spatially separated antennas are used at the receiver. Additional improvements in the combined envelopes through lower level crossing rates and fade durations at low signal levels were also observed.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.