119 resultados para Poly(propylene) (PP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: One mechanism of tumor resistance to cytotoxic therapy is repair of damaged DNA. Poly(ADP-ribose) polymerase (PARP)-1 is a nuclear enzyme involved in base excision repair, one of the five major repair pathways. PARP inhibitors are emerging as a new class of agents that can potentiate chemotherapy and radiotherapy. The article reports safety, efficacy, pharmacokinetic, and pharmacodynamic results of the first-in-class trial of a PARP inhibitor, AG014699, combined with temozolomide in adults with advanced malignancy.

Experimental Design: Initially, patients with solid tumors received escalating doses of AG014699 with 100 mg/m2/d temozolomide × 5 every 28 days to establish the PARP inhibitory dose (PID). Subsequently, AG014699 dose was fixed at PID and temozolomide escalated to maximum tolerated dose or 200 mg/m2 in metastatic melanoma patients whose tumors were biopsied. AG014699 and temozolomide pharmacokinetics, PARP activity, DNA strand single-strand breaks, response, and toxicity were evaluated.

Results: Thirty-three patients were enrolled. PARP inhibition was seen at all doses; PID was 12 mg/m2 based on 74% to 97% inhibition of peripheral blood lymphocyte PARP activity. Recommended doses were 12 mg/m2 AG014699 and 200 mg/m2 temozolomide. Mean tumor PARP inhibition at 5 h was 92% (range, 46-97%). No toxicity attributable to AG014699 alone was observed. AG014699 showed linear pharmacokinetics with no interaction with temozolomide. All patients treated at PID showed increases in DNA single-strand breaks and encouraging evidence of activity was seen.

Conclusions: The combination of AG014699 and temozolomide is well tolerated, pharmacodynamic assessments showing proof of principle of the mode of action of this new class of agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.

Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.

Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.

Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixing of poly(methyl methacrylate) (PMMA) bone cement has been studied to develop methods for preparing a consistently high quality cement. A novel droplet test experimental procedure was developed that characterised the wetting characteristics involved in bone cement mixing. Using this technique it was established that increased wetting occurred by mixing bone cement at a lower temperature (-28 degreesC) than normal mixing at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, [C(4)mim][PF6] was found to be an efficient plasticizer for poly( methyl methacrylate), prepared by in situ radical polymerization in the ionic liquid medium; the polymers have physical characteristics comparable with those containing traditional plasticizers and retain greater thermal stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New ionic liquids containing ( 2- hydroxypropyl)- functionalized imidazolium cations have been synthesized by the atom- efficient, room temperature reaction of 1- methylimidazole with acid and propylene oxide; the acid providing the anionic component of the resultant ionic liquids. The incorporation of the secondary hydroxyl- functionality in the cation causes some interesting modifications to the behavior of these ionic liquids, increasing hydrophilicity and resulting in the unprecedented formation of liquid - liquid biphases with acetone. The single crystal structure of 1-( 2- hydroxypropyl)- 3- methylimidazolium tetraphenylborate, prepared by metathesis of the corresponding chloride- containing ionic liquid, has also been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conductive ionic liquid -poly(ethylene glycol) (IL-PEG) gels have been prepared by gelation of the hydrophobic ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [(C(6)mim] [NTf2]) by the cross-linking reaction of disuccinimidylpropyl PEG monomers with four-arm tetraamine PEG cross-linkers. This is the first time that a crosslinked PEG matrix, such as this, has been used to gel nonaqueous solvents. Initial studies screening other ionic liquids as solvents indicate that the gelation of the ionic liquid is both cation and anion dependent with smaller, coordinating cations disrupting or preventing gel formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method using a combination of ball milling, acid hydrolysis, and ultrasound was developed to obtain a high yield of cellulose nanofibers from flax fibers and microcrystalline cellulose (MCC). Poly(vinyl alcohol) (PVA) nanocomposites were prepared with these additives by a solution-casting technique. The cellulose nanofibers and nanocomposite films that were produced were characterized with Fourier transform infrared spectrometry, X- ray diffraction, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Nanofibers derived from MCC were on average approximately 8 nm in diameter and 111 nm in length. The diameter of the cellulose nanofibers produced from flax fibers was approximately 9 nm, and the length was 141 nm. A significant enhancement of the thermal and mechanical properties was achieved with a small addition of cellulose nanofibers to the polymer matrix. Interestingly, the flax nanofibers had the same reinforcing effects as MCC nanofibers in the matrix. Dynamic mechanical analysis results indicated that the use of cellulose nanofibers (acid hydrolysis) induced a mechanical percolation phenomenon leading to outstanding and unusual mechanical properties through the formation of a rigid filler network in the PVA matrix. X-ray diffraction showed that there was no significant change in the crystallinity of the PVA matrix with the incorporation of cellulose nanofibers. © 2009 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporation of 1-alkylcarbonyloxymethylprodrugs of 5FU into poly(lactide-co-glycolide) nanoparticles using nanoprecipitation methods gave increased loading efficiencies over that obtained using the parent drug substance. SEM studies revealed spherical nanoparticles of around 200 nm in diameter, corresponding well with measurements made using photon correlation spectroscopy. The C-7 prodrug gave the best mean loading of 47.23%, which compared favourably to 3.68% loading achieved with 5FU. Loading efficiency was seen to follow the hydrophilic-lipophilic balance in the homologue series, where increases in lipophilicities alone were not good predictors of loading. Drug release, in terms of resultant 5FU concentration, was monitored using a flow-through dissolution apparatus. Cumulative drug release from nanoparticles loaded with the C-5 prodrug was linear over 6h, with approximately 14% of the total available 5FU dose released and with no evidence of a burst effect. The flux profile of the C-5-loaded nanoparticles showed an initial peak in flux in the first sampling interval, but became linear for the remainder of the release phase. C-7-loaded nanoparticles released considerably less (4% in 6 h) with a similar flux pattern to that seen with the C-5 prodrug. The C-9-loaded nanoparticles released less than 1% of the available 5FU over 6 h, with a similar zero-order profile. The C7 prodrug was deemed to be the prodrug of choice, achieving the highest loadings and releasing 5FU, following hydrolysis, in a zero-order fashion over a period of at least 6 h. Given the lack of burst effect and steady-state flux conditions, this nanoparticulate formulation offers a better dosing strategy for sustained intravenous use when compared to that arising from nanoparticles made by direct incorporation of 5FU. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).