53 resultados para Plum Island Animal Disease Laboratory.
Resumo:
Digital dermatitis (DD) is a bacterial disease that primarily affects the skin on the heels of cattle. It is a major cause of lameness in dairy cows and a significant problem for the dairy industry in many countries, causing reduced animal welfare and economic loss. A wide range of infection levels has been found on infected farms, prompting investigations into both farm level and animal level risk factors for DD occurrence. There also appears to be individual variation between animals in susceptibility to the disease. The identification of factors affecting individual variation in susceptibility to DD might allow changes in breeding policies or herd management which could be used to reduce DD prevalence. Factors mentioned in the literature as possibly influencing individual variation in susceptibility to DD include physical factors such as hoof conformation and properties of the skin, physiological factors such as the efficacy of the immune response, and behavioural factors such as standing half in cubicles. Further work is required to determine the influence of these factors, identify the genetic basis of variation, clarify the level of heritability of DD susceptibility and to determine how this is correlated with production and health traits currently used in breeding programmes.
Resumo:
Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF.
Resumo:
The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.
Resumo:
This review describes an approach to the prevention of graft-versus-host disease (GVHD) and graft rejection following allogeneic BMT that differs from conventional methods. Ultraviolet (UV) irradiation inhibits the proliferative responses of lymphoid cells to mitogens and alloantigens by inactivation of T lymphocytes and dendritic cells, and in animal models this can prevent both GVHD and graft rejection. It is important that the marrow repopulating capacity of haemopoietic stem cells is not damaged by the irradiation process. We have found that polymorphic microsatellite markers are a sensitive way of assessing the impact of UV irradiation on chimerism after BMT in rodents.
Resumo:
Objectives The increasing prevalence of overweight and obesity worldwide continues to compromise population health and creates a wider societal cost in terms of productivity loss and premature mortality. Despite extensive international literature on the cost of overweight and obesity, findings are inconsistent between Europe and the USA, and particularly within Europe. Studies vary on issues of focus, specific costs and methods. This study aims to estimate the healthcare and productivity costs of overweight and obesity for the island of Ireland in 2009, using both top-down and bottom-up approaches.
Methods Costs were estimated across four categories: healthcare utilisation, drug costs, work absenteeism and premature mortality. Healthcare costs were estimated using Population Attributable Fractions (PAFs). PAFs were applied to national cost data for hospital care and drug prescribing. PAFs were also applied to social welfare and national mortality data to estimate productivity costs due to absenteeism and premature mortality.
Results The healthcare costs of overweight and obesity in 2009 were estimated at €437 million for the Republic of Ireland (ROI) and €127.41 million for NI. Productivity loss due to overweight and obesity was up to €865 million for ROI and €362 million for NI. The main drivers of healthcare costs are cardiovascular disease, type II diabetes, colon cancer, stroke and gallbladder disease. In terms of absenteeism, low back pain is the main driver in both jurisdictions, and for productivity loss due to premature mortality the primary driver of cost is coronary heart disease.
Conclusions The costs are substantial, and urgent public health action is required in Ireland to address the problem of increasing prevalence of overweight and obesity, which if left unchecked will lead to unsustainable cost escalation within the health service and unacceptable societal costs.
Resumo:
Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases.
Resumo:
Climate and other environmental change presents a number of challenges for effective food safety. Food production, distribution and consumption takes place within functioning ecosystems but this backdrop is often ignored or treated as static and unchanging. The risks presented by environmental change include novel pests and diseases, often caused by problem species expanding their spatial distributions as they track changing conditions, toxin generation in crops, direct effects on crop and animal production, consequences for trade networks driven by shifting economic viability of production methods in changing environments and finally, wholesale transformation of ecosystems as they respond to novel climatic regimes.
Resumo:
Transdermal drug delivery is an attractive route of drug administration, however there are relatively few marketed transdermal products. To increase delivery across the skin, strategies to enhance skin permeability are widely investigated, with microneedles demonstrating particular promise. Hydrogel-forming microneedles are inserted into the skin, and following dissolution of a drug loaded reservoir and movement of the drug through the created channels, the microneedle array is removed intact, and can then be readily and safely discarded. This study presents the formulation and evaluation of an integrated microneedle patch containing the Alzheimer's drug, donepezil hydrochloride. The integrated patch consisted of hydrogel-forming microneedles in combination with a donepezil hydrochloride containing film. Formulation and characterisation of plasticised films, prepared from poly(vinylpyrrolidone) or poly (methyl vinyl ether co-maleic anhydride/acid) (Gantrez(®)) polymers, is presented. Furthermore, in vitro permeation of donepezil hydrochloride across neonatal porcine skin from the patches was investigated, with 854.71 μg ± 122.71 μg donepezil hydrochloride delivered after 24 h, using the optimum patch formulation. Following administration of the patch to an animal model, plasma concentrations of 51.8 ± 17.6 ng/mL were obtained, demonstrating the success of this delivery platform for donepezil hydrochloride.