179 resultados para Physicochemical parameters
Resumo:
The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.
Resumo:
Spatial structures of plasma parameters in a radio-frequency inductively coupled magnetic neutral loop discharge are investigated under various parameter variations using spatially resolved Langmuir probe measurements. A strong coupling between the plasma production region, in the neutral loop (NL) plane, and the axially remote substrate region is observed. The two regions are connected through the separatrices and therefore, spatial profiles in the substrate region are strongly influenced by the plasma production region and the structure of the separatrices. The electron temperature in the plasma production region peaks in the centre of the NL while the maximum in electron density is shifted radially inwards due to diffusion. Details of the structures in both regions, the production region and the substrate region, are determined through the position of the NL and the gradient of the inhomogeneous magnetic field around the NL confinement region. Parameter combinations are found providing higher plasma densities and better uniformity than in common inductively coupled plasmas without applying an additional magnetic field. The uniformity can be further improved using temporal variations of the magnetic field structure.
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
The speeds of sound u in, densities ? and refractive indices nD of some homologous series, such as n-alkyl ethanoates, n-alkyl propionates, methyl alkanoates, ethyl alkanoates, dialkyl malonates, and alkyl haloalkanoates, were measured in the temperature range from 298.15 to 333.15 K. Molar volume V, isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, molecular radius r, Rao’s molar function R, thermal expansion coefficient a, thermal pressure coefficient ?, and Flory’s characteristic parameters image, P*, V*, and T* have been calculated from the measured experimental data. Applicability of Rao theory and Flory–Patterson–Pandey (FPP) theory have been examined and discussed for these alkanoates.
Resumo:
The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.
Resumo:
In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (