48 resultados para Pedestrian accidents.
Resumo:
Introduction: Fewer than 50% of adults and 40% of youth meet US CDC guidelines for physical activity (PA) with the built environment (BE) a culprit for limited PA. A challenge in evaluating policy and BE change is the forethought to capture a priori PA behaviors and the ability to eliminate bias in post-change environments. The present objective was to analyze existing public data feeds to quantify effectiveness of BE interventions. The Archive of Many Outdoor Scenes (AMOS) has collected 135 million images of outdoor environments from 12,000 webcams since 2006. Many of these environments have experienced BE change. Methods: One example of BE change is the addition of protected bike lanes and a bike share program in Washington, DC.Weselected an AMOS webcam that captured this change. AMOS captures a photograph from eachwebcamevery half hour.AMOScaptured the 120 webcam photographs between 0700 and 1900 during the first work week of June 2009 and the 120 photographs from the same week in 2010. We used the Amazon Mechanical Turk (MTurk) website to crowd-source the image annotation. MTurk workers were paid US$0.01 to mark each pedestrian, cyclist and vehicle in a photograph. Each image was coded 5 unique times (n=1200). The data, counts of transportation mode, was downloaded to SPSS for analysis. Results: The number of cyclists per scene increased four-fold between 2009 and 2010 (F=36.72, p=0.002). There was no significant increase in pedestrians between the two years, however there was a significant increase in number of vehicles per scene (F=16.81, p
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.
Resumo:
Run Off Road (ROR) crashes are road accidents that often result in severe injuries or fatalities. To reduce the severity of ROR crashes, “forgiving roadsides” need to be designed and this includes identifying situations where there is a need for a Vehicle Restraint System (VRS) and what appropriate VRS should be selected for a specific location and traffic condition. Whilst there are standards covering testing, evaluation and classification of VRS within Europe (EN1317 parts 1 to 8), their selection, location and installation requirements are typically based upon national guidelines and standards, often produced by National Road Authorities (NRA) and/or overseeing organisations. Due to local conditions, these national guidelines vary across Europe.
The European SAVeRS project funded by CEDR has developed a practical and readily understandable VRS guidance document and a user-friendly software tool which allow designers and road administrations to select the most appropriate solution in different road and traffic conditions.
This paper describes the main outcomes of the project, the process to select the most appropriate roadside barrier, and the user friendly SAVeRS tool.