132 resultados para Pathogenic bacteria.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregations or blooms of jellyfish are increasingly problematic for the aquaculture industry. Jellyfishassociated mass mortalities of sea-caged fish are most often caused by swarms of oceanic species like Pelagia noctiluca. These relatively large jellyfish get carried by tides and currents onto fish cages, causing them to break up into pathogenic nematocyst-containing pieces that are capable of passing through the mesh of the cages. The main effect on fish is gill damage leading to respiratory distress, but the lesions may also be compounded by bacterial infection, Tenacibaculum maritimum being one of the pathogens involved. In our previous study, we highlighted the ability of the jellyfish Phialella quadrata to carry this important pathogen. However, since these small jellyfish were collected around sea-cages of infected salmon, it was not possible to determine if the jellyfish or the fish themselves were the original source of the bacteria. Results of the current study demonstrate that these filamentous bacteria are present on the mouth of P. noctiluca that had no previous contact with farmed fish. These new results highlight the fact that some Cnidarian species harbour T. maritimum and suggest that jellyfishmight be a natural host for these bacteria whose environmental reservoir has not yet been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.