155 resultados para Pasquier, Étienne-Denis


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives; Antisense oligonucleotides (AO) downregulate Bcl-2 protein expression in various tumours if good target cell uptake is achieved. In this study, uptake of FITC labelled AO (FITC-AO) directed at Bcl-2 was examined in; (1) the RT4 bladder tumour cell line (2) normal pig urothelium and (3) human superficial bladder tumours. Methods; In the RT4 cell line, uptake of FITC-AO, FITC-scrambled and FITC-sense oligonucleotides were quantified by flow cytometry at 4h intervals over 24h. Uptake of FITC-AO was assessed in normal pig urothelium by flow cytometry after FITC-AO was infused for 1h. Uptake of FITC AO was assessed in samples from 14 human superficial bladder tumours which were maintained in an ex vivo model. In samples from 6 tumours, uptake at 4h was assessed using fluorescence microscopy. In samples from 8 separate tumours uptake every 4h within the first 24h incubation period was assessed by flow cytometry. Results; In the RT4 cell line the FITC-AO, FITC-scrambled and FITC-sense oligonucleotide uptake was similar. Disaggregated cells from the normal urothelium of the three pigs exhibited 33%, 46%, 51% of cells staining positively for FITC-AO as determined by flow cytometry. All 6 tumour samples had detectable intracellular FITC-AO by fluorescence microscopy at 4h. In the 8 tumours ,examined over the 24h incubation period, there was a range of percentages of positively staining cells. However, most tumours had a monotonic increase in intracellular fluorescence intensity that plateaued 16h post infusion. Conclusion; Antisense Bcl-2 oligonucleotides were readily taken up by superficial bladder cancer cells but the heterogenous uptake in tumour samples needs to be considered when assessing the bioavailability of these drugs.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical `health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.