99 resultados para PLURIPOTENT STEM-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface marker CD44 has been identified as one of several markers associated with cancer stem cells (CSC) in solid tumors, but its ubiquitous expression in many cell types, including hematopoietic cells, has hindered its use in targeting CSCs. In this study, 28 paired primary tumor and adjacent nontumor gastric tissue samples were analyzed for cell surface protein expression. Cells that expressed pan-CD44 were found to occur at significantly higher frequency in gastric tumor tissues. We identified CD44v8-10 as the predominant CD44 variant expressed in gastric cancer cells and verified its role as a gastric CSC marker by limiting dilution and serial transplantation assays. Parallel experiments using CD133 failed to enrich for gastric CSCs. Analyses of another 26 primary samples showed significant CD44v8-10 upregulation in gastric tumor sites. Exogenous expression of CD44v8-10 but not CD44 standard (CD44s) increased the frequency of tumor initiation in immunocompromised mice. Reciprocal silencing of total CD44 resulted in reduced tumor-initiating potential of gastric cancer cells that could be rescued by CD44v8-10 but not CD44s expression. Our findings provide important functional evidence that CD44v8-10 marks human gastric CSCs and contributes to tumor initiation, possibly through enhancing oxidative stress defense. In addition, we showed that CD44v8-10 expression is low in normal tissues. Because CD44 also marks CSCs of numerous human cancers, many of which may also overexpress CD44v8-10, CD44v8-10 may provide an avenue to target CSCs in other human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graft-versus-host disease (GVHD) remains a significant complication in patients undergoing allogeneic stem cell transplantation (SCT) using a reduced intensity conditioning regimen. Although T-cell depletion (TCD) reduces the risk of GVHD after a myeloablative conditioning regimen, it is associated with an increased risk of graft failure. We have therefore examined whether TCD compromises engraftment using a fludarabine-based conditioning regimen. Fifteen patients have been transplanted using such a regimen of whom 13 underwent ex vivo TCD. All but one patient demonstrated durable engraftment and no patient receiving a TCD product developed severe GVHD. Thus, TCD may play a role in GvHD prophylaxis using such regimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet B (UVB) light is known to be immunosuppressive, but, probably because of a small UVC component in the emission spectra of some of the UVB lamps used, reports vary on effective dose levels. To prevent potentially lethal graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation, alloreactive donor T-cell activity must be suppressed. In this study, a narrow wavelength UVB lamp (TL01, 312 nm peak emission) was used to determine what doses of UVB were required to abolish rat lymphocyte proliferation while simultaneously preserving rat bone marrow progenitor cell and primitive hematopoietic stem cell viability. Lymphocyte proliferation, as measured by 3H-Thymidine incorporation, in response to lectin stimulation was abolished below detection at doses greater than 3,500 J/m2. When T-cell clonogenicity was measured in a limiting dilution assay, a small fraction (0.6%) was maintained at doses up to 4,000 J/m2. Cytotoxic T-lymphocyte (CTL) activity was reduced after treatment with 4,000 J/m2, but a significant level of cytotoxicity was still maintained. Natural killer cell cytolytic activity was not affected by doses up to 4,000 J/m2. At 4,000 J+m2 there was a 10% survival of colony-forming units-granulocyte-macrophage; a 1% and 4% survival of day-8 and day-12 colony-forming units-spleen, respectively; and 11% survival of marrow repopulating ability cells. Up to 25% of late cobblestone area forming cells (4 to 5 weeks), reflecting the more immature hematopoietic stem cells, were preserved in bone marrow treated with 4,000 J/m2, indicating that early stem cells are less sensitive to UVB damage than are more committed progenitor cells. Thus, a potential therapeutic window was established at approximately 4,000 J/m2 using this light source, whereby the potentially GVHD-inducing T cells were suppressed, but a sufficient proportion of the cells responsible for engraftment was maintained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Ca2+ ion is an important intracellular messenger essential for the regulation of various cellular functions including proliferation, differentiation and apoptosis. Transient Receptor Potential (TRP) channels are calcium permeable cationic channels that play important role in regulation of free intracellular calcium ([Ca2+]i) in response to thermal, physical and chemical stimuli. Ca2+ signalling in human dental pulp stem cells (hDPSCs) and the ion channels regulating Ca2+ are largely not known. Objectives: Investigate changes in [Ca2+]i and determine the ion channels that regulate calcium signalling in hDPSCs. Methods: DPSCs were derived from immature third molars and cells less than passage 6 were used in all the experiments. Changes in [Ca2+]i were studied with Fura2 calcium imaging. RNA was extracted from DPSCs and a panel of TRP channel gene expression was determined by qPCR employing custom designed FAM TRP specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). Results: hDPSCs express gene transcripts for all TRP families including TRPV1, V2, V4, TRPA1, TRPC3, TRPC5, TRPC6, TRPM3, TRPM7 and TRPP2. Stimulation of cells with appropriate TRP channel agonist induced increase in [Ca2+]i and similar responses were obtained when cell were mechanically stimulated by membrane stretch with application of hypotonic solution. Conclusion: TRP channels mediate calcium signalling in hDPSCs that merit further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivative, AD-01, have already demonstrated well-established inhibitory effects on breast cancer growth and CD44 dependent anti-angiogenic activity1, 2, 3. Since breast cancer stem cells (BCSCs) are CD44 positive, we wanted to explore if AD-01 could specifically target BCSCs. FKBPL stable overexpression or AD-01 treatment were highly effective at reducing the BCSC population measured by inhibiting mammosphere forming efficiency (MFE) in cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- subpopulation, validated these results. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed across three generations of mammospheres, where mammospheres were completely eradicated by the third generation (p<0.001). Clonogenic assays suggested that AD-01 mediated BCSC differentiation, with a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones. In support of this, the stem cell markers, Nanog and Oct4 were significantly reduced following AD-01 treatment, whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in mammosphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). When AD-01 was combined with other agents, we observed synergistic activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Importantly, using ‘gold standard’ in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, AD-01 appears to have dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivatives have already demonstrated well-established inhibitory effects on cancer growth and CD44-dependent anti-angiogenic activity. Since cancer stem cells (CSCs) are CD44 positive, we wanted to explore if these therapeutics could specifically target CSCs in breast and ovarian cancer. In a tumoursphere assay, FKBPL stable overexpression or FKBPL-based peptide (AD-01, preclinical peptide or ALM201, clinical peptide candidate) treatment were highly effective at reducing the CSC population measured by inhibiting tumoursphere forming efficiency in breast and ovarian cancer cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- and ALDH+ cell subpopulations representative of CSCs, validated these results. The ability of AD-01 and ALM201 to inhibit the self-renewal capacity of CSCs was confirmed across three generations, eradicating CSC completely by the third generation (p<0.001). Furthermore, clonogenic assay demonstrated that FKBPL-based peptides mediated CSC differentiation, with a significant decrease in the number of CSCs or holoclones and an associated increase in differentiated cancer cells or meroclones/paraclones. In addition, AD-01 treatment in vitro and in vivo led to a significant reduction in the stem cell markers, Nanog, Sox2 and Oct4 protein and mRNA levels; whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in tumoursphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). Additionally, when AD-01 was combined with other agents, we observed additive activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in CSCs. Importantly, using gold standard in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, FKBPL-based peptides appear to have dual anti-angiogenic and anti-CSC activity which will be advantageous as this agent enters clinical trial.