77 resultados para PKH26, flow cytometry, proliferation, proteoglycan 4 (PRG4), chondrocyte


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of immune modifiers of inherited cancer syndromes may provide a rationale for preventive therapy. Cowden disease (CD) is a genetically heterogeneous inherited cancer syndrome that arises predominantly from germline phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation and increased phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signalling. However, many patients with classic CD diagnostic features are mutation-negative for PTEN (PTEN M-Neg). Interferon (IFN)-gamma can modulate the PI3K/mTOR pathway, but its association with PTEN M-Neg CD remains unclear. This study assessed IFN-gamma secretion by multi-colour flow cytometry in a CD kindred that was mutation-negative for PTEN and other known susceptibility genes. Because IFN-gamma responses may be regulated by killer cell immunoglobulin-like receptors (KIR) and respective human leucocyte antigen (HLA) ligands, KIR/HLA genotypes were also assessed. Activating treatments induced greater IFN-gamma secretion in PTEN M-Neg CD peripheral blood lymphocytes versus healthy controls. Increased frequency of activating KIR genes, potentially activating KIR/HLA compound genotypes and reduced frequency of inhibitory genotypes, were found in the PTEN M-Neg CD kindred. Differences of IFN-gamma secretion were observed among PTEN M-Neg CD patients with distinct KIR/HLA compound genotypes. Taken together, these findings show enhanced lymphocyte secretion of IFN-gamma that may influence the PI3K/mTOR CD causal molecular pathway in a PTEN mutation-negative CD kindred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS I have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS I had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio, (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous brown alga Ectocarpus has a complex life cycle, involving alternation between independent and morphologically distinct sporophyte and gametophyte generations. In addition to this basic haploid–diploid life cycle, gametes can germinate parthenogenetically to produce parthenosporophytes. This article addresses the question of how parthenosporophytes, which are derived from a haploid progenitor cell, are able to produce meiospores in unilocular sporangia, a process that normally involves a reductive meiotic division.
We used flow cytometry, multiphoton imaging, culture studies and a bioinformatics survey of the recently sequenced Ectocarpus genome to describe its life cycle under laboratory conditions and the nuclear DNA changes which accompany key developmental transitions.
Endoreduplication occurs during the first cell cycle in about one-third of parthenosporophytes. The production of meiospores by these diploid parthenosporophytes involves a meiotic division similar to that observed in zygote-derived sporophytes. By contrast, meiospore production in parthenosporophytes that fail to endoreduplicate occurs via a nonreductive apomeiotic event.
Our results highlight Ectocarpus’s reproductive and developmental plasticity and are consistent with previous work showing that its life cycle transitions are controlled by genetic mechanisms and are independent of ploidy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND:
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear.

METHODS:
To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN(+/+), HCT116PTEN(-/-), Caco2 and Caco2 ShPTEN cells) after transfection or treatment strategies.

RESULTS:
The PTEN knockout or suppression by short hairpin RNA or small interfering RNA (siRNA) inhibited Cdc42 activity, PARP cleavage and/or apoptosis in flow cytometry assays. Transfection of cells with wild-type or constitutively active Cdc42 enhanced PARP cleavage, whereas siRNA silencing of Cdc42 inhibited PARP cleavage and/or apoptosis. Pharmacological upregulation of PTEN by sodium butyrate (NaBt) treatment enhanced Cdc42 activity, PARP cleavage and apoptosis, whereas Cdc42 siRNA suppressed NaBt-induced PARP cleavage. Cdc42-dependent signals can suppress glycogen synthase kinase-ß (GSK3ß) activity. Pharmacological inhibition of GSK3ß by lithium chloride treatment mimicked effects of Cdc42 in promotion of PARP cleavage and/or apoptosis.

CONCLUSION:
Phosphatase and tensin homologue deleted on chromosome 10 may influence apoptosis in colorectal epithelium through Cdc42 signalling, thus providing a regulatory framework for both polarised growth and programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic antimicrobial agents may prevent device-associated infections caused by Staphylococcus epidermidis and Staphylococcus aureus. This study reports that the cationic antimicrobial polymer poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) was more effective at antagonizing growth of clinical isolates of S. epidermidis than of S. aureus. Importantly, mature S. epidermidis biofilms were significantly inactivated by pDMAEMA. The S. aureus isolates tested were generally more hydrophobic than the S. epidermidis isolates and had a less negative charge, although a number of individual S. aureus and S. epidermidis clinical isolates had similar surface hydrophobicity and charge values. Fluorescence spectroscopy and flow cytometry revealed that fluorescently labelled pDMAEMA interacted strongly with S. epidermidis compared with S. aureus. S. aureus Delta dltA and Delta mprF mutants were less hydrophobic and therefore more susceptible to pDMAEMA than wild-type S. aureus. Although the different susceptibility of S. epidermidis and S. aureus isolates to pDMAEMA is complex, influenced in part by surface hydrophobicity and charge, these findings nevertheless reveal the potential of pDMAEMA to treat S. epidermidis infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To characterize the importance of cellular Fas-associated death domain (FADD)–like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)–promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)–targeted therapy.

Experimental Design: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions.

Results: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7–mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance.

Conclusion: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC. Clin Cancer Res; 18(14); 3822–33.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coeliac disease is an enteropathy associated with dietary gluten which occurs in individuals with a genetic predisposition. The pathogenesis remains obscure although it is clear that only certain parts of the gliadin molecule are toxic and there is considerable evidence of immunological activity, including antibody production. In this issue of European Journal of Gastroenterology and Hepatology Carton et al. present evidence in favour of an inherent depletion of CD4CD8 T cells, which could result in a loss of oral tolerance to ingested gliadin. Using flow cytometry they also demonstrated that the classic T-cell infiltration of coeliac disease is not due to an increase in T cells but is an apparent increase associated with a relative decrease in enterocytes as a result of the change in architecture of the mucosa. These could be important fundamental observations in helping to unravel the pathogenesis of coeliac disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.

Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.

Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.

Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: FKBPL and its peptide derivative, AD-01, have already demonstrated tumour growth inhibition and CD44 dependent anti-angiogenic activity. Here we explore the ability of AD-01 to target CD44 positive breast cancer stem cells (BCSCs). EXPERIMENTAL DESIGN: Mammosphere assays and flow cytometry were utilized to analyse the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anti-cancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples and xenografts. Delays in tumour initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, qPCR and immunofluorescence. RESULTS: AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere forming efficiency (MFE) and ESA+/CD44+/CD24- or ALDH+ cell subpopulations in vitro and tumour initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism appears to be due to AD-01-mediated BCSC differentiation demonstrated by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4 and Sox2, were also significantly reduced. Furthermore, we demonstrated additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signalling. CONCLUSIONS: AD-01 has dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1–CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3 (rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05). Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1–CCN3 signalling contributes to the pathogenesis of CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose:The Signal Transducer and Activator of Transcription 3 (STAT3) pathway is known to play an important role in inflammation and angiogenesis. STAT3 can be activated by IL-6 family cytokines through the receptor IL-6R/gp130. Increased IL-6 has been detected in the plasma and vitreous in neovascular age-related macular degeneration (nAMD) patients. The aim of this study was to investigate the role of the STAT3 pathway in the pathogenesis of nAMD.

Methods:Blood cells from nAMD patients (n = 11) and age-, gender-matched healthy controls (n = 13) were stimulated with IL-6 for 20 minutes. The expression of the activated form of STAT3 (p-STAT3) was examined by flow cytometry. The mRNA levels of gp130, IL-6R and the suppressor of cytokine signalling 3 (SOCS3, a negative regulator of p-STAT3) were evaluated by real-time RT-PCR. Laser-induced choroidal neovascularisation (CNV) was performed in WT C57BL/6J mice as well as in the myeloid cell specific SOCS3 deficiency mice i.e., the LysMCre-SOCS3fl/fl mice. STAT3 activation in CNV lesions was examined by western blot. The size of CNV at different times after laser treatment was measured by confocal microscopy of RPE/choroidal flatmounts.

Results:The expression of p-STAT3 in CD11b+ monocytes was significantly increased in nAMD patients compared to healthy controls, although mRNA expression of gp130, IL-6R and SOCS3 did not differ between patients and controls. The expression of p-STAT3 in the retinal and RPE/choroidal tissues was increased at 1 and 3 days after laser treatment. The administration of a STAT3 inhibitor LLL12 significantly suppressed CNV. CD11b+ monocytes from LysMCre-SOCS3fl/fl mice expressed higher levels of p-STAT3 compared to the cells from WT mice. Laser induced CNV developed earlier and were larger in LysMCre-SOCS3fl/fl mice compared to WT C57BL/6J mice.

Conclusions:Our results suggest that STAT3 activation in circulating monocytes may contribute to the development of choroidal neovascularisation in AMD, and targeting the STAT3 pathway may have therapeutic potential in nAMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although trastuzumab (Herceptin) has substantially improved the overall survival of patients with mammary carcinomas, even initially well-responding tumors often become resistant. Because natural killer (NK) cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is thought to contribute to the therapeutic effects of trastuzumab, we have established a cell culture system to select for ADCC-resistant SK-OV-3 ovarian cancer and MCF7 mammary carcinoma cells. Ovarian cancer cells down-regulated HER2 expression, resulting in a more resistant phenotype. MCF7 breast cancer cells, however, failed to develop resistance in vitro. Instead, treatment with trastuzumab and polyclonal NK cells resulted in the preferential survival of individual sphere-forming cells that displayed a CD44(high)CD24(low) "cancer stem cell-like" phenotype and expressed significantly less HER2 compared with non-stem cells. Likewise, the CD44(high)CD24(low) population was also found to be more immunoresistant in SK-BR3, MDA-MB231, and BT474 breast cancer cell lines. When immunoselected MCF7 cells were then re-expanded, they mostly lost the observed phenotype to regenerate a tumor cell culture that displayed the initial HER2 surface expression and ADCC-susceptibility, but was enriched in CD44(high)CD24(low) cancer stem cells. This translated into increased clonogenicity in vitro and tumorigenicity in vivo. Thus, we provide evidence that the induction of ADCC by trastuzumab and NK cells may spare the actual tumor-initiating cells, which could explain clinical relapse and progress. Moreover, our observation that the "relapsed" in vitro cultures show practically identical HER2 surface expression and susceptibility toward ADCC suggests that the administration of trastuzumab beyond relapse might be considered, especially when combined with an immune-stimulatory treatment that targets the escape variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the roles of the CCL2-CCR2 and CX3CL1-CX3CR1 pathways in experimental autoimmune uveoretinitis (EAU)-mediated retinal tissue damage and angiogenesis.

Methods: The C57BL/6J wild-type (WT) and CCL2−/−CX3CR1gfp/gfp (double knockout [DKO]) mice were immunized with IRBP1-20. Retinal inflammation and tissue damage were evaluated clinically and histologically at different days postimmunization (p.i.). Retinal neovascular membranes were evaluated by confocal microscopy of retinal flat mounts, and immune cell infiltration by flow cytometry.

Results: At day 25 p.i., DKO mice had lower clinical and histological scores and fewer CD45highCD11b+ infiltrating cells compared with WT mice. The F4/80+macrophages constitute 40% and 21% and CD11b+Gr-1+Ly6G+ neutrophils constitute 10% and 22% of retinal infiltrating cells in WT and DKO mice, respectively. At the late stages of EAU (day 60–90 p.i.), DKO and WT mice had similar levels of inflammatory score. However, less structural damage and reduced angiogenesis were detected in DKO mice. Neutrophils were rarely detected in the inflamed retina in both WT and DKO mice. Macrophages and myeloid-derived suppressor cells (MDSCs) accounted for 8% and 3% in DKO EAU retina, and 19% and 10% in WT EAU retina; 71% of infiltrating cells were T/B-lymphocytes in DKO EAU retina and 50% in WT EAU retina.

Conclusions: Experimental autoimmune uveoretinitis–mediated retinal tissue damage and angiogenesis is reduced in CCL2−/−CX3CR1gfp/gfp mice. Retinal inflammation is dominated by neutrophils at the acute stage and lymphocytes at the chronic stage in these mice. Our results suggest that CCR2+ and CX3CR1+monocytes are both involved in tissue damage and angiogenesis in EAU.