132 resultados para PERTURBED ANGULAR CORRELATION
Resumo:
Ionic liquids have received significant interest from both academia and industry for a wide range of applications which often requires knowledge of their thermophysical properties. Quantitative structure-property relationship correlations and group contribution methods for thermophysical properties of ionic liquids are a basic necessity for the development of computer aided molecular design approaches for these liquids and subsequently offer the potential for designing an ionic liquid having a desirable set of thermophysical properties. However, the limited availability of experimental thermophysical data and their quality have prevented the development of such tools. Based on previously reported experimental surface tension data, a correlation of the parachors with the molar volume of the ionic liquids has been developed. The predicted parachor values have been shown to be in good agreement with the experimental data. A maximum deviation of
Resumo:
The design, fabrication, and characterization of single-screen perturbed frequency-selective surfaces (FSS) at infrared frequencies for single and multiband applications are reported. Single-band FSS based on parallel strips have been perturbed by decreasing the length of every second strip within the array in order to achieve dual band-stop responses. The same principle has been extended to design FSS exhibiting tri- and quadreflection bands. In addition, strip FSSs have been perturbed by replacing every second strip for a metallic ring, resulting in dual-band filters with different polarization responses of the bands. These designs have been fabricated on large thin polyimide membranes using sacrificial silicon wafers. An oxide interlayer between the sacrificial silicon wafer and the polyimide membrane is employed to stop the silicon etching and is wet etched subsequently by a solution of ammonium fluoride and acetic acid that does not attack either the polyimide membrane or the aluminium FSS elements. Fourier transform infrared spectroscopy measurements are presented to validate the predicted responses of the fabricated prototypes.
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.
Resumo:
Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Multiresonant high impedance surfaces (HIS) without grounding vias that perform as artificial magnetic conductors (AMC) in multiple frequency bands and furthermore exhibit electromagnetic band gaps (EBG) in the same bands are presented. This is achieved by introducing perturbed frequency selective surface (FSS) arrays printed on grounded dielectric substrates. Arrays of linear dipoles are employed as an example. Perturbations are introduced by means of reducing the length of every other array element. Starting from the characteristics of a perturbed free-standing FSS, the authors present the effect of the perturbation on the excited currents and on the reflection properties of a corresponding AMC. Conclusions about the performance limitations are derived. Subsequently, a parametric study on practical HIS is presented and an optimised design with dual-band AMC and EBG response is demonstrated. Method of moments-based software has been developed and utilised for the fast and accurate analysis of such arrays. Experimental results validate the performance of the optimised structure.
Resumo:
A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.
Resumo:
PURPOSE:
To investigate whether variation in the distribution of the risk allele frequency of the Y402H single-nucleotide polymorphism (SNP) across various ethnicities and geographic regions reflects differences in the prevalence of late age-related macular degeneration (AMD) in those ethnicities.
METHODS:
Published data were obtained via a systematic search. Study samples were grouped into clusters by ethnicity and geographic location and the Spearman correlation coefficient of the prevalence of late AMD and risk allele frequencies was calculated across clusters.
RESULTS:
Across all ethnicities, AMD prevalence was seen to increase with age. Populations of European descent had both higher risk allele frequencies and prevalence of late AMD than did Japanese, Chinese, and Hispanic descendants. Results for African descendants were anomalous: although allele frequency was similar to that in European populations, the age-specific prevalence of late AMD was considerably lower. The correlation coefficient for the association between allele frequency and AMD prevalence was 0.40 (95% confidence interval [CI] = -0.36 to 0.84, P = 0.28) in all populations combined and 0.71 (95% CI = 0.02-0.94, P = 0.04) when people of African descent were excluded.
CONCLUSIONS:
Evidence was found at the population level to support a positive association between the Y204H risk allele and the prevalence of AMD after exclusion of studies undertaken on persons of African ancestry. Data in African, Middle Eastern, and South American populations are needed to provide a better understanding of the association of late AMD genetic risk across ethnicities.
Resumo:
We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.
Resumo:
We retrieved synovial tissue and fluid samples from patients undergoing primary total hip replacement (THR) (n 15), revision of aseptically loose THR (n 12), primary total knee replacement (TKR) (n 13) and revision of aseptically loose TKR (n 6). Several histological parameters were assessed on a relative scale of 1-4. Primary TJRs were clinically evaluated for degree of osteoarthrosis. Revision TJRs were assessed for migration of the implant, gross loosening and the degree of radiolucency. Cytokine levels in synovial fluid were determined with ELISA.