164 resultados para Oxidative metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of hydrogen (H-2 2H(+) + 2e(-)) constitutes a central process in the global biological energy cycle. Among all the enzymes that can mediate this process, Fe-only hydrogenases are unique in their particular high reactivity. Recently, some important progresses have been achieved. Following our previous paper [Z.-P. Liu and P. Hu, J. Am. Chem. Soc. 124, 5175 (2002)] that characterizes the individual redox state of the active site of Fe-only hydrogenase, in this work we have determined the feasible reaction pathways and energetics for the H-2 metabolism on the active site of Fe-only hydrogenases, using density functional theory. We show that H-2 metabolism possesses very low reaction barriers and a proximal base from a nearby protein plays an important role in H-2 metabolism. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Recent studies suggest that oxidative stress should be monitored alongside HbA(1c) to identify subgroups of diabetic patients at high risk of initiation or progression of retinopathy. The acrolein-derived advanced lipoxidation end-product (ALE), [Formula: see text]-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine), is a useful biomarker that reflects the cumulative burden of oxidative stress over long periods of time. The purpose of the present study was to investigate whether serum and haemoglobin levels of FDP-lysine are associated with the severity of diabetic retinopathy in type 1 and type 2 diabetic patients.

METHODS: Serum and haemoglobin levels of FDP-lysine were measured by competitive ELISA in 59 type 1 and 76 type 2 diabetic patients with no retinopathy, non-proliferative retinopathy or proliferative retinopathy (mean age [+/-SEM] 54.3 +/- 1.3 years), and in 47 non-diabetic control individuals (mean age 51.9 +/- 2.1 years).

RESULTS: Serum and haemoglobin levels of FDP-lysine were significantly increased in diabetic patients compared with control individuals (p = 0.04 and p = 0.002, respectively). However, no significant association was found between levels of serum FDP-lysine and the severity of diabetic retinopathy (p = 0.97). In contrast, increased haemoglobin FDP-lysine levels were observed in patients with proliferative retinopathy compared with patients without retinopathy and with non-proliferative retinopathy (p = 0.04). The relationship of FDP-lysine with proliferative retinopathy was unaltered after adjustment for HbA(1c), or other clinical parameters.

CONCLUSIONS/INTERPRETATION: Our data suggest that haemoglobin FDP-lysine may provide a useful risk marker for the development of proliferative diabetic retinopathy independently of HbA(1c), and that elevated intracellular ALE formation may be involved in the pathogenesis of this sight-threatening complication of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Individuals with impaired glucose tolerance (IGT) have a greater risk of developing diabetes and cardiovascular disease compared with those with normal glycemic control. The aim of this study was to examine the effects of acute aerobic exercise on glycemia, regional arterial stiffness, and oxidative stress in obese subjects with IGT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-113), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappa B activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and down-stream inflammatory pathways. AGE-R3 may protect against these effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a gulf between the enormous information content of the various genome projects and the understanding of the life of the parasite in the host. In vitro studies with adult Schistosoma mansoni using several substrates suggest that the excretory system contains both P-glycoproteins and multiresistance proteins. If both these families of protein were active in vivo, they could regulate parasite metabolism and be responsible for the excretion of drugs. During skin penetration, membrane-impermeant molecules of a wide range of molecular weights can be taken into the cercaria and schistosomulum through the nephridiopore, through the surface membrane or through both. We speculate that this uptake process might stimulate novel signalling pathways involved in growth and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.