151 resultados para Ovarian tumor
Resumo:
Differential gene expression in two established initiation and promotion skin carcinogenesis models during promotion and tumor formation was determined by microarray technology with the purpose of distinguishing the genes more associated with neoplastic transformation from those linked with proliferation and differentiation. The first model utilized dimethylbenz[a]anthracene initiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion in the FVB/N mouse, and the second TPA promotion of the Tg.Ac mouse, which is endogenously initiated by virtue of an activated Ha-ras transgene. Comparison of gene expression profiles across the two models identified genes whose altered expression was associated with papilloma formation rather than TPA-induced proliferation and differentiation. DMBA suppressed TPA-induced differentiation which allowed identification of those genes associated more specifically with differentiation rather than proliferation. EASE (Expression Analysis Systemic Explorer) indicated a correlation between muscle-associated genes and skin differentiation, whereas genes involved with protein biosynthesis were strongly correlated with proliferation. For verification the altered expression of selected genes were confirmed by RT-PCR; Carbonic anhydrase 2, Thioredoxin 1 and Glutathione S-transferase omega 1 associated with papilloma formation and Enolase 3, Cystatin 6 and Filaggrin associated with TPA-induced proliferation and differentiation. In situ analysis located the papillomas Glutathione S-transferase omega 1 expression to the proliferating areas of the papillomas. Thus we have identified profiles of differential gene expression associated with the tumorigenesis and promotion stages for skin carcinogenesis in the mouse.
Resumo:
Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.
Resumo:
Regulatory T (Treg) cells limit the onset of effective antitumor immunity, through yet-ill-defined mechanisms. We showed the rejection of established ovalbumin (OVA)-expressing MCA101 tumors required both the adoptive transfer of OVA-specific CD8(+) T cell receptor transgenic T cells (OTI) and the neutralization of Foxp3(+) T cells. In tumor-draining lymph nodes, Foxp3(+) T cell neutralization induced a marked arrest in the migration of OTI T cells, increased numbers of dendritic cells (DCs), and enhanced OTI T cell priming. Using an in vitro cytotoxic assay and two-photon live microscopy after adoptive transfer of DCs, we demonstrated that Foxp3(+) T cells induced the death of DCs in tumor-draining lymph nodes, but not in the absence of tumor. DC death correlated with Foxp3(+) T cell-DC contacts, and it was tumor-antigen and perforin dependent. We conclude that Foxp3(+) T cell-dependent DC death in tumor-draining lymph nodes limits the onset of CD8(+) T cell responses.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
Resumo:
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.
Resumo:
Antibody targeting of drug substances can improve the efficacy of the active molecule, improving distribution and concentration of the drug at the site of injury/disease. Encapsulation of drug substances into polymeric nanoparticles can also improve the therapeutic effects of such compounds by protecting the molecule until its action is required. In this current study, we have brought together these two rationales to develop a novel immunonanoparticle with improved therapeutic effect against colorectal tumor cells. This nanoparticle comprised a layer of peripheral antibodies (Ab) directed toward the Fas receptor (CD95/Apo-1) covalently attached to poly(lactide-co-glycolide) nanoparticles (NP) loaded with camptothecin. Variations in surface carboxyl density permitted up to 48.5 mu g coupled Ab per mg of NP and analysis of nanoparticulate cores showed efficient camptothecin loading. Fluorescence visualization studies confirmed internalization of nanoconstructs into endocytic compartments of HCT 116 cells, an effect not evident in NP without superficial Ab. Cytotoxicity studies were then carried out against HCT116 cells. After 72 h, camptothecin solution resulted in an IC50 of 21.8 ng mL(-1). Ab-directed delivery of NP-encapsulated camptothecin was shown to be considerably more effective with an IC50 of 0.37 ng mL(-1). Calculation of synergistic ratios for these nanoconstructs demonstrated synergy of pharmacological relevance. Indeed, the results in this paper suggest that the attachment of anti-Fas antibodies to camptothecin-loaded nanoparticles may result in a therapeutic strategy that could have potential in the treatment of tumors expressing death receptors.
Resumo:
Succinate dehydrogenase B (SDHB) and D (SDHD) subunit gene mutations predispose to adrenal and extraadrenal pheochromocytomas, head and neck paragangliomas (HNPGL), and other tumor types. We report tumor risks in 358 patients with SDHB (n = 295) and SDHD (n = 63) mutations. Risks of HNPGL and pheochromocytoma in SDHB mutation carriers were 29% and 52%, respectively, at age 60 years and 71% and 29%, respectively, in SDHD mutation carriers. Risks of malignant pheochromocytoma and renal tumors (14% at age 70 years) were higher in SDHB mutation carriers; 55 different mutations (including a novel recurrent exon 1 deletion) were identified. No clear genotype-phenotype correlations were detected for SDHB mutations. However, SDHD mutations predicted to result in loss of expression or a truncated or unstable protein were associated with a significantly increased risk of pheochromocytoma compared to missense mutations that were not predicted to impair protein stability (most such cases had the common p.Pro81Leu mutation). Analysis of the largest cohort of SDHB/D mutation carriers has enhanced estimates of penetrance and tumor risk and supports in silicon protein structure prediction analysis for functional assessment of mutations. The differing effect of the SDHD p.Pro81Leu on HNPGL and pheochromocytoma, risks suggests differing mechanisms of tumorigenesis in SDH-associated HNPGL and pheochromocytoma. Hum Mutat 31:41-51, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
This multi-centre UK study assesses the impact of predictive testing for breast and ovarian cancer predisposition genes (BRCA 1/2) in the clinical context. In the year following predictive testing, 261 adults (59 male) from nine UK genetics centres participated; 9 I gene mutation carriers and 170 noncarriers. Self-report questionnaires were completed at baseline (pre-genetic testing) and 1, 4 and 12 months following the genetic test result. Men were assessed for general mental health (by general health questionnaire (GHQ)) and women for general mental health, cancer-related worry, intrusive and avoidant thoughts, perception of risk and risk management behaviour. Main comparisons were between female carriers and noncarriers on all measures and men and women for general mental health. Female noncarriers benefited psychologically, with significant reductions in cancer-related worry following testing (P
Resumo:
Introduction: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.
Resumo:
Desmoplastic small round cell tumor is a rare malignant neoplasm mostly occurring in the vicinity of or within the peritoneal cavity, and is uncommon in the head and neck region. Tumor location within a major salivary gland is exceptional. We report a case of a 41-year-old Chinese man with a history of diabetes mellitus and end-stage renal failure on peritoneal dialysis with a desmoplastic small round cell tumor occurring in the left submandibular gland. Fine-needle aspiration cytology showed variably cohesive clusters of small cells with hyperchromatic nuclei and fine granular chromatin. On histology the neoplasm displayed classic features of a desmoplastic small round cell tumor with angulated nests of small round blue cells in a fibromyxoid/desmoplastic stroma. Neoplastic cells were immunoreactive for cytokeratins (AE1/3), desmin (paranuclear dot-like), WT-1 (nuclear), epithelial membrane antigen, and CD56. EWS gene translocation and EWS-WT1 gene fusion were detected by fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction, respectively. The case presented is the sixth case of and the oldest reported patient with a desmoplastic small round cell tumor occurring in a major salivary gland to date. Desmoplastic small round cell tumor should be considered in the differential diagnosis of a salivary gland neoplasm with a basaloid or small cell pattern on fine-needle aspiration cytology.
Claudin-1 Has Tumor Suppressive Activity and Is a Direct Target of RUNX3 in Gastric Epithelial Cells
Resumo:
BACKGROUND & AIMS: The transcription Factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We alined to identify RUNX3 target genes that promote cell-cell contact to Improve our understanding of RUNX3's role in Suppressing gastric carcinogenesis. METHODS: We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistologic, analyses of human gastric tumors were performed to confirm the role of the candidate genes ill gastric tumor development. RESULTS: Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight Junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells From Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1. increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. CONCLUSIONS: The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition.