68 resultados para OXAZINE-750
Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project
Resumo:
In 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.
Resumo:
A plethora of studies have described the in vitro assessment of dissolving microneedle (MN) arrays for enhanced transdermal drug delivery, utilising a wide variety of model membranes as a representation of the skin barrier. However, to date, no discussion has taken place with regard to the choice of model skin membrane and the impact this may have on the evaluation of MN performance. In this study, we have, for the first time, critically assessed the most common types of in vitro skin permeation models - a synthetic hydrophobic membrane (Silescol(®) of 75 µm) and neonatal porcine skin of definable thickness (300-350 µm and 700-750 µm) - for evaluating the performance of drug loaded dissolving poly (methyl vinyl ether co maleic acid) (PMVE/MA) MN arrays. It was found that the choice of in vitro skin model had a significant effect on the permeation of a wide range of small hydrophilic molecules released from dissolving MNs. For example, when Silescol(®) was used as the model membrane, the cumulative percentage permeation of methylene blue 24h after the application of dissolvable MNs was found to be only approximately 3.7% of the total methylene blue loaded into the MN device. In comparison, when dermatomed and full thickness neonatal porcine skin were used as a skin model, approximately 67.4% and 47.5% of methylene blue loaded into the MN device was delivered across the skin 24h after the application of MN arrays, respectively. The application of methylene blue loaded MN arrays in a rat model in vivo revealed that the extent of MN-mediated percutaneous delivery achieved was most similar to that predicted from the in vitro investigations employing dermatomed neonatal porcine skin (300-350 µm) as the model skin membrane. On the basis of these results, a wider discussion within the MN community will be necessary to standardise the experimental protocols used for the evaluation and comparison of MN devices.
Resumo:
Background: The consumption of maize highly contaminated with carcinogenic fumonisins has been linked to high oesophageal cancer rates. The aim of this study was to validate a urinary fumonisin B-1 (UFB1) biomarker as a measure of fumonisin exposure and to investigate the reduction in exposure following a simple and culturally acceptable intervention.
Methods: At baseline home-grown maize, maize-based porridge, and first-void urine samples were collected from female participants (n = 22), following their traditional food practices in Centane, South Africa. During intervention the participants were trained to recognize and remove visibly infected kernels, and to wash the remaining kernels. Participants consumed the porridge prepared from the sorted and washed maize on each day of the two-day intervention. Porridge, maize, and urine samples were collected for FB1 analyses.
Results: The geometric mean (95% confidence interval) for FB1 exposure based on porridge (dry weight) consumption at baseline and following intervention was 4.84 (2.87-8.14) and 1.87 (1.40-2.51) mg FB1/kg body weight/day, respectively, (62% reduction, P < 0.05). UFB1C, UFB1 normalized for creatinine, was reduced from 470 (295-750) at baseline to 279 (202-386) pg/mg creatinine following intervention (41% reduction, P = 0.06). The UFB1C biomarker was positively correlated with FB1 intake at the individual level (r - 0.4972, P < 0.01). Urinary excretion of FB1 was estimated to be 0.075% (0.054%-0.104%) of the FB1 intake.
Conclusion: UFB1 reflects individual FB1 exposure and thus represents a valuable biomarker for future fumonisin risk assessment.
Impact: The simple intervention method, hand sorting and washing, could positively impact on food safety and health in communities exposed to fumonisins. Cancer Epidemiol Biomarkers Prev; 20(3); 483-9. (C)2011 AACR.
Resumo:
The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs (WDs) - realizations of explosion models appropriate for two of the most widely discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect. © © 2012 The American Astronomical Society. All rights reserved.
Resumo:
Aim - To describe a new method of evaluating the topographic distribution of fundus autofluorescence in eyes with retinal disease. Methods - Images of fundus autofluorescence were obtained in five patients and 34 normal volunteers using a confocal scanning laser ophthalmoscope (cSLO). To evaluate the topographic distribution of fundus autofluorescence throughout the posterior pole a rectangular box, 10 x 750 pixels, was used as the area of analysis. The box was placed, horizontally, across the macular region. The intensity of fundus autofluorescence of each pixel within the rectangular box was plotted against its degree of eccentricity. Profiles of fundus autofluorescence from patients were compared with those obtained from the age matched control group and with cSLO images. Results - Profiles of fundus autofluorescence appeared to represent the topographic distribution of fundus autofluorescence throughout the posterior pole appreciated in the cSLO images, and allowed rapid identification and quantification of areas of increased or decreased fundus autofluorescence. Conclusions - Fundus autofluorescence profiles appear to be useful to study the spatial distribution of fundus autofluorescence in eyes with retinal disease.
Resumo:
Aims/hypothesis: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.
Methods: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1 diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10−4 were followed up in 3,750 additional patients with type 1 diabetes from seven studies.
Results: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10−8). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic association observed at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.
Conclusions/interpretation: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
This paper describes the result of a project to develop climate adaptation design strategies funded by the UK’s Technology Strategy Board. The aim of the project was to look at the threats and opportunities presented by industrialized and house-building techniques in the light of predicted future increases in flooding and overheating due to anthropogenic climate change. The paper shows that the thermal performance of houses built to the current UK Building Regulations is not adequate to cope with changing weather patterns, and in light of this, develops a detailed design for a new house: one that is industrially produced and climatically resilient, but affordable. This detailed concept IDEAhaus of a modular house is not only flood-proof to a water depth of 750 mm, but also is designed to utilize passive cooling, which dramatically reduces the amount of overheating, both now and in the future.
Resumo:
The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological 14C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.
Resumo:
Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-β-d-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K. Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments. © 2011 American Chemical Society.
Resumo:
Extensive archaeological excavations in the Niah Caves (Sarawak, Malaysian Borneo) over the past 50 years have produced perhaps 750 000 fragments of vertebrate bone, one of the largest faunal assemblages in the region, This paper introduces a series of research studies examining different aspects of the Niah fauna, and discusses how they are contributing to, and shaping, regional research agendas relating to prehistoric environments and societies in Island Southeast Asia. Zooarchaeology has traditionally had a rather 'Cinderella' status here, but the ongoing programme of study of the Niah Caves fauna is demonstrating the remarkable potential of this material to address questions of Pleistocene and Holocene climate and environment, biodiversity, human activities within caves, people's engagement with the landscapes they inhabited as foragers and farmers, and the nature of the transition from foraging to farming. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
During the 1950s and 1960s, excavations by the Sarawak Museum at Niah Cave in northwest Borneo produced an enormous archive of records and artefacts, including in excess of 750,000 macro- and micro-vertebrate remains. The excellent state of preservation of the animal bone, dating from the Late Pleistocene (c. 40 kya) to as recently as c. 500 years ago had the potential to provide unparalleled zooarchaeological information about early hunter-gatherer resource procurement, temporal changes in subsistence patterning, and the impact of peoples on the local and regional environment in Island Southeast Asia. However, the coarse-grained methods of excavation employed during the original investigations and the sheer scale of the archaeological record and bone assemblages dissuaded many researchers from attempting to tackle the Niah archives. This paper outlines how important information on the nature of the archaeological record at Niah has now finally been extracted from the archive using a combination of zooarchaeological analysis and reference to the extensive archaeological records from the site. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (111) surface of silicon and the von Mises stress to yield the silicon reduces by 25% and 32%, respectively, at 1173 K compared to what is required at 300 K. The room temperature cutting anisotropy in the von Mises stress and the room temperature cutting anisotropy in the specific cutting energy (work done by the tool in removing unit volume of material) were obtained as 12% and 16% respectively. It was observed that this changes to 20% and 40%, respectively, when cutting was performed at 1500 K, signifying a very strong correlation between the anisotropy observed during cutting and the machining temperature. Furthermore, using the atomic strain criterion, the width of primary shear zone was found to vary with the orientation of workpiece surface and temperature i.e. it remains narrower while cutting the (111) surface of silicon or at higher machining temperatures. A major anecdote of the study based on the potential function employed in the study is that, irrespective of the cutting plane or the cutting temperature, the state of the cutting edge of the diamond tool did not show direct diamond to graphitic phase transformation.
Resumo:
Ni-substituted Sr2Fe1.5-xNixMo0.5O6-δ (SFNM) materials have been investigated as anode catalysts for intermediate temperature solid oxide fuel cells. Reduced samples (x = 0.05 and 0.1) maintained the initial perovskite structure after reduction in H2, while metallic nickel particles were detected on the grain surface for x = 0.2 and 0.3 using transmission electron microscopy. Temperature programmed reduction results indicate that the stable temperature for SFNM samples under reduction conditions decreases with Ni content. In addition, X-ray photoelectron spectroscopy analysis suggests that the incorporation of Ni affects the conductivity of SFNM through changing the ratios of Fe3+/Fe2+ and Mo6+/Mo5+. Sr2Fe1.4Ni0.1Mo0.5O6-δ shows the highest electrical conductivity of 20.6 S cm-1 at 800 °C in H2. The performance of this anode was further tested with electrolyte-supported cells, giving 380 mW cm-2 at 750 °C in H2, hence demonstrating that Ni doping in the B-site is beneficial for Sr2Fe1.5Mo0.5O6-δ anode performance.