149 resultados para Neutron sources
Resumo:
Experiments were carried out from June 2000 to April 2001 to compare survival of European lobster (Homarus gammarus) offspring (larvae and juveniles) from three brood sources, Kvitsøy Wild (KW), Kvitsøy Cultured (KC), and Rogaland Wild (RW), Norway. In the first set of experiments, newly hatched larvae (stage I) were raised in separate family tanks. All larvae groups survived to stage III/IV, although large variation in relative survival was observed among families within each of the three different female groups. Highest overall survival was observed for the RW group (12.8%), whereas no differences in overall survival were found between the KW (9.0%) and KC groups (9.6%). From stage III/IV, larvae from single family tank experiments were mixed in five “common garden” juvenile experiments. These lasted for 9 months, and the surviving juveniles were identified to family/female group using microsatellite DNA profiling. Significantly higher survival of the KW families (7.0%) was found compared with the KC (3.7%) and the RW families (3.2%), and differences in family ranking of relative survival values were evident between the KW and KC groups. The relative survival rate of the different groups was independent of female lobster size. An estimate based on only stage IV larvae reduced the difference in survival between the KW (11.4%) and KC (8.3%) group. The experiments provided evidence that cultured females (KC) are producing viable offspring with lower, but comparable survival to that of offspring from wild females (KW).
Resumo:
Changes to software requirements occur during initial development and subsequent to delivery, posing a risk to cost and quality while at the same time providing an opportunity to add value. Provision of a generic change source taxonomy will support requirements change risk visibility, and also facilitate richer recording of both pre- and post-delivery change data. In this paper we present a collaborative study to investigate and classify sources of requirements change, drawing comparison between those pertaining to software development and maintenance. We begin by combining evolution, maintenance and software lifecycle research to derive a definition of software maintenance, which provides the foundation for empirical context and comparison. Previously published change ‘causes’ pertaining to development are elicited from the literature, consolidated using expert knowledge and classified using card sorting. A second study incorporating causes of requirements change during software maintenance results in a taxonomy which accounts for the entire evolutionary progress of applications software. We conclude that the distinction between the terms maintenance and development is imprecise, and that changes to requirements in both scenarios arise due to a combination of factors contributing to requirements uncertainty and events that trigger change. The change trigger taxonomy constructs were initially validated using a small set of requirements change data, and deemed sufficient and practical as a means to collect common requirements change statistics across multiple projects.
Resumo:
The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases-leading to local mesoscopic inhomogeneity-with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.