268 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of regularisation to the training of feedforward neural networks, as a means of improving the quality of solutions obtained. The basic principles of regularisation theory are outlined for both linear and nonlinear training and then extended to cover a new hybrid training algorithm for feedforward neural networks recently proposed by the authors. The concept of functional regularisation is also introduced and discussed in relation to MLP and RBF networks. The tendency for the hybrid training algorithm and many linear optimisation strategies to generate large magnitude weight solutions when applied to ill-conditioned neural paradigms is illustrated graphically and reasoned analytically. While such weight solutions do not generally result in poor fits, it is argued that they could be subject to numerical instability and are therefore undesirable. Using an illustrative example it is shown that, as well as being beneficial from a generalisation perspective, regularisation also provides a means for controlling the magnitude of solutions. (C) 2001 Elsevier Science B.V. All rights reserved.