54 resultados para Needle bearings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This preliminary investigation was designed to test the hypothesis that high intensity single-leg exercise can cause extensive cell DNA damage, which subsequently may affect the expression of the HO-1 gene. METHODS: Six (n=6) apparently healthy male participants (age 27 + 7 yrs, stature 174 + 12 cm, body mass 79 + 4 kg and BMI 24 + 4 kg/m2) completed 100 isolated and continuous maximal concentric contractions (minimum force = 200 N, speed of contraction = 60°/sec) of the rectus femoris muscle. Using a spring-loaded and reusable Magnum biopsy gun with a 16-gauge core disposable biopsy needle, skeletal muscle micro biopsy tissue samples were extracted at rest and following exercise. mRNA gene expression was determined via two-step quantitative real-time PCR using GAPDH as a reference gene. RESULTS: The average muscle force production was 379 + 179 N. High intensity exercise increased mitochondrial 8-OHdG concentration (P < 0.05 vs. rest) with a concomitant decrease in total antioxidant capacity (P < 0.05 vs. rest). Exercise also increased protein oxidation as quantified by protein carbonyl concentration (P < 0.05 vs. rest). HO-1 expression increased (> 2-fold change vs. rest) following exercise, and it is postulated that this change was not significant due to low subject numbers (P > 0.05). CONCLUSION: These preliminary findings tentatively suggest that maximal concentric muscle contractions can cause intracellular DNA damage with no apparent disruption to the expression of the antioxidant stress protein HO-1. Moreover, it is likely that cell oxidant stress is required to activate the signal transduction cascade related to the expression of HO-1. A large-scale study incorporating a greater subject number is warranted to fully elucidate this relationship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of formulations and drug delivery strategies for paediatric use is challenging, partially due to the age ranges within this population, resulting in varying requirements to achieve optimised patient outcomes. Although the oral route of drug delivery remains the preferred option, there are problematic issues, such as difficulty swallowing and palatability of medicines specific to this population. The parenteral route is not well accepted by children due to needle-related fear and pain. Accordingly, a plethora of alternative routes of drug administration have been investigated. Microneedles (MN) breach the stratum corneum (SC), the outermost layer of skin, increasing the number of drug substances amenable to transdermal delivery. This strategy involves the use of micron-sized needles to painlessly, and without drawing blood, create transient aqueous conduits in the SC. In this study, polymeric dissolving MN and hydrogel-forming MN were fabricated incorporating two model drugs commonly used in paediatric patients (caffeine and lidocaine hydrochloride). The potential efficacy of these MN for paediatric dosing was investigated via in vitro and in vivo studies. Views pertaining to MN technology were sought amongst school children in Northern Ireland, members of the UK general public and UK-based paediatricians, to determine perceived benefits, acceptance, barriers and concerns for adoption of this technology. In this study, polymeric MN were shown to substantially enhance skin permeability of the model therapeutic molecules in vitro and in vivo. In particular, hydrogel-forming MN led to a 6.1-fold increase in caffeine delivery whilst lidocaine HCl delivery was increased by 3.3-fold using dissolving MN in vitro. Application of caffeine-loaded MN led to a caffeine plasma concentration of 23.87μg/mL in rats at 24h. This research also highlighted a strong consensus regarding MN technology amongst schoolchildren, paediatricians and the general public, regarding potential use of MN in the paediatric population. Overall, 93.6% of general public respondents and 85.9% of paediatricians regarded the use of MN as a positive approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research book covers the major aspects relating to the use of novel delivery systems in enhancing both transdermal and intradermal drug delivery. It provides a review of transdermal and intradermal drug delivery, including the history of the field and the various methods employed to produce delivery systems from different materials such as device design, construction and evaluation, so as to provide a sound background to the use of novel systems in enhanced delivery applications.

Furthermore, it presents in-depth analyses of recent developments in this exponentially growing field, with a focus on microneedle arrays, needle-free injections, nanoparticulate systems and peptide-carrier-type systems. It also covers conventional physical enhancement strategies, such as tape-stripping, sonophoresis, iontophoresis, electroporation and thermal/suction/laser ablation Discussions about the penetration of the stratum corneum by the various novel strategies highlight the importance of the application method. Comprehensive and critical reviews of transdermal and intradermal delivery research using such systems focus on the outcomes of in vivoanimal and human studies. The book includes laboratory, clinical and commercial case studies featuring safety and patient acceptability studies carried out to date, and depicts a growing area for use of these novel systems is in intradermal vaccine delivery. The final chapters review recent patents in this field and describe the work ongoing in industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biological tissues in the in vitro assessments of dissolving (?) microneedle (MN) array mechanical strength and subsequent drug release profiles presents some fundamental difficulties, in part due to inherent variability of the biological tissues employed. As a result, these biological materials are not appropriate for routine used in industrial formulation development or quality control (QC) tests. In the present work a facile system using Parafilm M® (PF) to test drug permeation performance using dissolving MN arrays is proposed. Dissolving MN arrays containing 196 needles (600 μm needle height) were inserted into a single layer of PF and a hermetic “pouch” was created including the array inside. The resulting system was placed in a dissolution bath and the release of model molecules was evaluated. Different MN formulations were tested using this novel setup, releasing between 40 and 180 µg of their cargos after 6 hours. The proposed system is a more realistic approach for MN testing than the typical performance test described in the literature for conventional transdermal patches. Additionally, the use of PF membrane was tested either in the hermetic “pouch” and using Franz Cell methodology yielding comparable release curves. Microscopy was used in order to ascertain the insertion of the different MN arrays in the PF layer. The proposed system appears to be a good alternative to the use of Franz cells in order to compare different MN formulations. Given the increasing industrial interest in MN technology, the proposed system has potential as a standardised drug/active agent release test for quality control purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pediatric ophthalmologists increasingly recognize that the ideal site for intraocular lens (IOL) implantation is in the bag for aphakic eyes, but it is always very difficult via conventional technique. We conducted a prospective case series study to investigate the success rate and clinical outcomes of capsular bag reestablishment and in-the-bag IOL implantation via secondary capsulorhexis with radiofrequency diathermy (RFD) in pediatric aphakic eyes, in which twenty-two consecutive aphakic pediatric patients (43 aphakic eyes) enrolled in the Childhood Cataract Program of the Chinese Ministry of Health were included. The included children underwent either our novel technique for secondary IOL implantation (with RFD) or the conventional technique (with a bent needle or forceps), depending on the type of preoperative proliferative capsular bag present. In total, secondary capsulorhexis with RFD was successfully applied in 32 eyes (32/43, 74.4%, age 5.6±2.3 years), of which capsular bag reestablishment and in-the-bag IOL implantation were both achieved in 30 eyes (30/43, 70.0%), but in the remaining 2 eyes (2/32, 6.2%) the IOLs were implanted in the sulcus with a capsular bag that was too small. Secondary capsulorhexis with conventional technique was applied in the other 11 eyes (11/43, 25.6%, age 6.9±2.3 years), of which capsular bag reestablishment and in-the-bag IOL implantation were both achieved only in 3 eyes(3/43, 7.0%), and the IOLs were implanted in the sulcus in the remaining 8 eyes. A doughnut-like proliferative capsular bag with an extensive Soemmering ring (32/43, 74.4%) was the main success factor for secondary capsulorhexis with RFD, and a sufficient capsular bag size (33/43, 76.7%) was an additional factor in successful in-the-bag IOL implantation. In conclusion, RFD secondary capsulorhexis technique has 70% success rate in the capsular bag reestablishment and in-the-bag IOL implantation in pediatric aphakic eyes, particularly effective in cases with a doughnut-like, extensively proliferative Soemmering ring. © 2013 Luo et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions