84 resultados para NEURONAL GAIN
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
The localization and distribution of cholinergic, serotoninergic (5-HT, serotonin) and peptidergic components of the nervous system of adult Cephalochlamys namaquensis (Cestoda: Pseudophyllidea) have been determined using enzyme histochemical and immunocytochemical techniques interfaced with light and confocal scanning laser microscopy. All three classes of neuroactive substance showed a similar pattern of staining, occurring extensively throughout the central and peripheral nervous systems of the parasite. There were some minor regional differences in staining, suggesting specific roles for certain classes of neurone, and nerve cell bodies were most evident following immunostaining for serotonin. The general overlap in the distribution of staining may be indicative of som co-localization of neurotransmitter and/or neuromodulatory substances.
Resumo:
Evidence of high gain pumped by recombination has been observed in the 5g-4f transition at 11.1 nn in sodiumlike copper ions with use of a 20-J 2-ps Nd:glass laser system. The time- and space-integrated gain coefficient was 8.8 +/- 1.4 cm(-1), indicating a single-transit amplification of similar to 60 times. This experiment has shown that 2 ps is the optimum pulse duration to drive the sodiumlike copper recombination x-ray lasing at 11.1 nm. (C) 1996 Optical Society of America
Resumo:
Recombining plasmas produced by picosecond laser pulses are characterized by measuring ratio of intensities of resonance lines of H- and He-like ions in the plasmas. It is found that the rapidly recombining plasmas produced by picosecond laser pulses are suitable for high-gain operation.
NEAR-FIELD IMAGING OF THE C-VI HIGH-GAIN RECOMBINATION X-RAY LASER-DRIVEN BY A 20-J, 2 PS LASER-BEAM
Resumo:
The gain coefficient of the strongest 3p --> 3s, J = 2 --> 1 lasing transition at 23.6 nm in the Ne-like Ge collisional excitation scheme has been measured, using the fundamental wavelength from a Nd:glass laser (1.06-mu-m), for a range of incident intensities on massive stripe targets up to 2.2 cm in length. From a threshold incident laser intensity of approximately 6 x 10(12) W/cm2, the gain coefficient rises to approximately 4.5 cm-1 for an irradiation intensity of approximately 2.5 x 10(13) W/cm2, tending towards still higher gain coefficients at higher incident intensities. For targets of maximum length, a gain-length product gL almost-equal-to 10 was reached with a resultant output power at 23.6 nm estimated to be at the approximately kW level. The beam divergence decreased with length to a minimum of approximately 7 mrad but no significant trend in beam pointing with plasma length was observed. From the trend in the gain coefficient, it appears that for a fixed energy laser irradiating a approximately 100-mu-m wide slab targets, an incident intensity of I(i) approximately 1.2 x 10(13) W/cm2 represents an optimum working level, assuming that plasma length is not limited by refractive effects. In addition to the usual valence electron excited 3p --> 3s transitions, the gain coefficient for the core excited 1s(2)2s2p(6)3d --> 1s(2)2s2p(6)3p transition at 19.9 nm has been measured to be approximately 1.5 cm-1 for an incident irradiance of approximately 2.5 x 10(13) W/cm2.