77 resultados para Molecular-genetic Evidence
Resumo:
ß-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a biological and positional candidate gene for Alzheimer’s disease (AD). BACE1 is a protease that catalyses APP cleavage at the ß-secretase site. We evaluated all common and putatively functional polymorphisms in the genomic region encompassing BACE1 for an association with AD, and for functional effects on platelet ß-secretase activity. Tag SNPs (n = 10) derived from phase II of the International HapMap Project, and a nonsynonymous variant, were successfully genotyped in 901 Caucasian individuals from Northern Ireland using Sequenom iPLEX and TaqMan technologies. APOE genotyping was performed by PCR-RFLP. Platelet membrane ß-secretase activity was assayed in a subset of individuals (n = 311). Hardy–Weinberg equilibrium was observed for all variants. Evidence for an association with AD was observed with multi-marker haplotype analyses (P = 0.01), and with rs676134 when stratified for APOE genotype (P = 0.02), however adjusting for multiple testing negated the evidence for association of this variant with AD. ?2 analysis of genotype and allele frequencies in cases versus controls for individual SNPs revealed no evidence for association (5% level). No genetic factors were observed that significantly influenced platelet membrane ß-secretase activity. We have selected an appropriate subset of variants suitable for comprehensive genetic investigation of the BACE1 gene. Our results suggest that common BACE1 polymorphisms and putatively functional variants have no significant influence on genetic susceptibility to AD, or platelet ß-secretase activity, in this Caucasian Northern Irish population.
Resumo:
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kutzing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.
Resumo:
Dissociation of the singly ionized CO2+ ion has been investigated in an intense ultrafast (55 fs) laser field, by employing an intensity selective scan technique and comparing the signals from linearly and circularly polarized pulses. Non-sequential contributions have been observed unambiguously for the first time, highlighting the role of rescattering in the dissociative process.
Resumo:
A north/south discontinuity along the northeastern coast of North America in the genetic structure of the American lobster (Homarus americanus) was detected using a suite of 13 microsatellite loci assessed using spatial analyses. Population genetic data laid over existing data on physiographic changes and sea-surface temperatures were used to reconstruct the Pleistocene distribution of this species. A postglacial northern-edge colonization model best explains the relative genetic homogeneity of the northern region compared to the southern region centred in the Gulf of Maine. Population genetic analyses identified significant structure (range of standardized theta 0-0.02) but no significant evidence for isolation by distance. The novel application of spatial genetic analyses to a marine species allowed us to interpret these results by providing a greater insight into the evolutionary factors responsible for shaping the genetic structure of this species throughout is natural range.
Resumo:
The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.
Resumo:
Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions.
Resumo:
This report describes a patient with a gastric biopsy specimen showing histomorphological and immunohistochemical appearances indistinguishable from those usually present in lymphocytic gastritis, a rare condition of unknown aetiology with a distinctive phenotype. The patient had a history of a biopsy confirmed T cell non-Hodgkin lymphoma at two anatomical sites ( bladder and stomach), which was subsequently treated. Molecular analysis of the T cell receptor (TCR) gamma chain gene rearrangements showed a distinct monoclonal T cell population in the bladder and gastric biopsies. The same analysis in the lymphocytic gastritis-like biopsy sample showed a monoclonal population with identical base pair size to that identified in the other specimens. This report highlights the importance of TCR gene rearrangement analysis in the diagnosis of unusual gastric inflammation, and the use of capillary electrophoresis based polymerase chain reaction in the follow up of lymphoproliferative disorders.
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.