239 resultados para Modern pollen rain


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-resolution palaeoecological and dendrochronological methods were used to investigate the impacts of climate change, and natural and anthropogenic disturbances on vegetation in the North Patagonian rainforest of southern Chile at decadal to century timescales during the late Holocene. A lake sediment mudâwater interface core was collected from the northern Chonos Archipelago and analysed for pollen and charcoal. Dendrochronological analysis of tree cores collected from stands of Pilgerodendron uviferum close to the lake site was incorporated into the study. The combined analysis showed that the present mosaic of vegetation types in this region is a function of environmental changes across a range of timescales: millennial climate change, more recent natural and anthropogenic disturbances, and possibly short-term climatic variations. Of particular interest is the spatiotemporal distribution of Pilgerodendron uviferum dieback/burning in the Chonos Archipelago region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen analysis of continuous sediment cores from two lakes in the northern Chonos Archipelago (44S) in southern Chile shows a complete postglacial record of vegetation change. The fossil records indicate that deglaciation was complete in the northern Chonos by at least 13,600 14Cyr BP. Ericaceous heath and grassland persisted for more than 600 years after deglaciation under the influence of dry/cold climates and frequent burning. Nothofagus-Pilgerodendron-Podocarpus forest, with modern analogues in the southern Chonos Archipelago, was established across the northern islands by 12,400 14Cyr BP under increasingly warm and wet climates. There is no evidence for a return to cooler climates during the Younger Dryas chronozone. The rise of Tepualia stipularis and Weinmannia trichosperma as important forest components between 10,600 and 6000 14Cyr BP may be associated withclimates that were warmer than present. The collapse of Pilgerodendron communities during this time may have been triggered by a combination of factors related to disturbance frequency including tephra deposition events, fire and climate change. After 6000 14Cyr BP Pilgerodendron recovers and Nothofagus-Pilgerodendron-Tepualia forest persists until the present. European logging and burning activity may have increased the susceptibility of North Patagonian Rainforest to invasion by introduced species and to future collapse of the long-lived Pilgerodendron communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high-resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in â˜absoluteâ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat-forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12-month resolution. At near-annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stencilling technique for depositing arrays of nanoscale ferroelectric capacitors on a surface could be useful in data storage devices.