104 resultados para Mine explosions.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPY plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 µg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic carbon (DOC) in the soil porewater. The global flux of arsines emanating from soils was estimated and placed in the context of As atmospheric inputs, with arsines contributing from 0.9 to 2.6% of the global budget.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isatis capadocica, a brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was examined to determine arsenate tolerance, metabolism and accumulation. I. cappadocica exhibited arsenate hypertolerance in both mine and nonmine populations, actively growing at concentrations of > 1 mm arsenate in hydroponic solution. I. cappadocica had an ability to accumulate high concentrations of arsenic in its shoots, in excess of 100 mg kg(-1) DW, with a shoot : root transfer ratio of > 1. The ability to accumulate arsenic was exhibited in both hydroponics and contaminated soils. Tolerance in this species was not achieved through suppression of high-affinity phosphate/arsenate root transport, in contrast to other monocotyledons and dicotyledons. A high percentage (> 50%) of arsenic in the tissues was phytochelatin complexed; however, it is argued that this is a constitutive, rather than an adaptive, mechanism of tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two approaches were undertaken to characterize the arsenic (As) content of Chinese rice. First, a national market basket survey (n = 240) was conducted in provincial capitals, sourcing grain from China's premier rice production areas. Second, to reflect rural diets, paddy rice (n = 195) directly from farmers fields were collected from three regions in Hunan, a key rice producing province located in southern China. Two of the sites were within mining and smeltery districts, and the third was devoid of large-scale metal processing industries. Arsenic levels were determined in all the samples while a subset (n = 33) were characterized for As species, using a new simple and rapid extraction method suitable for use with Hamilton PRP-X100 anion exchange columns and HPLC-ICP-MS. The vast majority (85%) of the market rice grains possessed total As levels <150 ng g(-1). The rice collected from mine-impacted regions, however, were found to be highly enriched in As, reaching concentrations of up to 624 ng g(-1). Inorganic As (As(i)) was the predominant species detected in all of the speciated grain, with As(i) levels in some samples exceeding 300 ng g(-1). The As(i) concentration in polished and unpolished Chinese rice was successfully predicted from total As levels. The mean baseline concentrations for As(i) in Chinese market rice based on this survey were estimated to be 96 ng g(-1) while levels in mine-impacted areas were higher with ca. 50% of the rice in one region predicted to fail the national standard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greylag geese (Anser anser) in the Guadalquivir Marshes (southwestern Spain) can be exposed to sources of inorganic pollution such as heavy metals and arsenic from mining activities or Pb shot used for hunting. We have sampled 270 fecal excreta in different areas of the marshes in 2001 to 2002 to evaluate the exposure to Pb, Zn, Cu, Mn, and As and to determine its relationship with soil ingestion and with the excretion of porphyrins and biliverdin as biomarkers. These effects and the histopathology of liver, kidney, and pancreas were also studied in 50 geese shot in 2002 to 2004. None of the geese had ingested Pb shot in the gizzard. This contrasts with earlier samplings before the ban of Pb shot for waterfowl hunting in 2001 and the removal of Pb shot in points of the Doñana National Park (Spain) in 1999 to 2000. The highest exposure through direct soil ingestion to Pb and other studied elements was observed in samples from Entremuros, the area of the Doñana Natural Park affected by the Aznalcóllar mine spill in 1998. Birds from Entremuros also more frequently showed mononuclear infiltrates in liver and kidney than birds from the unaffected areas, although other more specific lesions of Pb or Zn poisoning were not observed. The excretion of coproporphyrins, especially of the isomer I, was positively related to the fecal As concentration, and the ratio of coproporphyrin III/I was positively related to fecal Pb concentration. Biliary protoporphyrin IX concentration was also slightly related to hepatic Pb concentration. This study reflects biological effects on terrestrial animals by the mining pollution in Doñana that can be monitored with the simple noninvasive sampling of feces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No unequivocal evidence exists of genetically inherited resistance to metals/metalloids in field populations of earthworms. We studied cocoon production in adult Lumbricus rubellus Hoffmeister collected from an abandoned arsenic and copper mine (Devon Great Consols, Devon, UK), and abandoned tungsten mine (Carrock Fell, Cumbria, UK) and an uncontaminated cultured population. The earthworms were kept in uncontaminated soil for nine weeks. From a total of 42 L. rubellus from each site, Devon Great Consols adults produced 301 cocoons, of which 42 were viable; Carrock Fell 60 cocoons, of which 11 were viable; and the reference population 101 cocoons, of which 62 were viable. The hatchlings were collected and stored at 4 degrees C at weekly intervals. After 12 weeks, all hatchlings were transferred to clean soil and maintained at 15 degrees C for 20 weeks until they showed evidence of a clitellum. In toxicity trials, F1 generation L. rubellus were exposed to 2,000 mg As/kg as sodium arsenate or 300 mg Cu/kg as copper chloride for 28 d. The F1 generation L. rubellus from Devon Great Consols mine demonstrated resistance to arsenate but not copper. All L. rubellus from Devon Great Consols kept in soil treated with sodium arsenate remained in good condition over the 28-d period but lost condition rapidly and suffered high mortality in soil treated with copper chloride. The control population suffered high mortality in soil treated with sodium arsenate and copper chloride. Previous work has shown that field-collected adults demonstrate resistance to both arsenate and Cu toxicity under these conditions. Thus, while arsenate resistance may be demonstrated in F1 generation L. rubellus from one of the contaminated sites, Cu resistance is not. The F1 adults and F2 cocoons did not have significantly higher levels of As than the control population, with no residual As tissue burden, suggesting that resistance to As in these populations may be inherited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two species of earthworm, Lumbricus rubellus Hoffmeister and Dendrodrilus rubidus (Savigny) collected from an arsenic-contaminated mine spoil site and an uncontaminated site were investigated for total tissue arsenic concentrations and for arsenic compounds by liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). For L. rubellus, whole-body total tissue arsenic concentrations were 7.0 to 17.0 mg arsenic/ kg dry weight in uncontaminated soil and 162 to 566 mg arsenic/kg dry weight in contaminated soil. For D. rubidus, whole-body tissue concentrations were 2.0 to 5.0 mg arsenic/kg dry weight and 97 to 321 mg arsenic/kg dry weight, respectively. Arsenobetaine was the only organic arsenic species detected in both species of earthworms, with the remainder of the extractable arsenic being arsenate and arsenite. There was an increase in the proportion of arsenic present as arsenobetaine in the total arsenic burden. Lumbricus rubellus and D. rubidus have similar life styles, both being surface living and litter feeding. Arsenic speciation was found to be similar in both species for both uncontaminated and contaminated sites, with dose-dependent formation of arsenobetaine. When L. rubellus and D. rabidus from contaminated sites were incubated in arsenic-free soils, the total tissue burden of arsenic diminished. Initially, L. rubellus from the tolerant populations (from the contaminated site) eliminated arsenic in the first 7 d of exposure before accumulating arsenic in tissues, whereas nontolerant populations (from the uncontaminated site) accumulated arsenic linearly. The tolerant and nontolerant L. rubellus eliminated tissue arsenic linearly over 21 d when incubated in uncontaminated soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic speciation was determined in Lumbricus rubellus Hoffmeister from arsenic-contaminated mine spoil sites and an uncontaminated site using HPLC-MS, HPLC-ICP-MS and XAS. It was previously demonstrated that L. rubellus from mine soils were more arsenate resistant than from the uncontaminated site and we wished to investigate if arsenic speciation had a role in this resistance. Earthworms from contaminated sites had considerably higher arsenic body burdens (maximum 1,358 mg As kg-1) compared to the uncontaminated site (maximum 13 mg As kg-1). The only organo-arsenic species found in methanol/water extracts for all earthworm populations was arsenobetaine, quantified using both HPLC-MS and HPLC-ICP-MS. Arsenobetaine concentrations were high in L. rubellus from the uncontaminated site when concentrations were expressed as a percentage of the total arsenic burden (23% mean), but earthworms from the contaminated sites with relatively low arsenic burdens also had these high levels of arsenobetaine (17% mean). As arsenic body burden increased, the percentage of arsenobetaine present decreased in a dose dependent manner, although its absolute concentration rose with increasing arsenic burden. The origin of this arsenobetaine is discussed. XAS analysis of arsenic mine L. rubellus showed that arsenic was primarily present as As(III) co-ordinated with sulfur (30% approx.), with some As(v) with oxygen (5%). Spectra for As(III) complexed with glutathione gave a very good fit to the spectra obtained for the earthworms, suggesting a role for sulfur co-ordination in arsenic metabolism at higher earthworm arsenic burdens. It is also possible that the disintegration of As(III)-S complexes may have taken place due to (a) processing of the sample, (b) storage of the extract or (c) HPLC anion exchange. HPLC-ICP-MS analysis of methanol extracts showed the presence of arsenite and arsenate, suggesting that these sulfur complexes disintegrate on extraction. The role of arsenic speciation in the resistance of L. rubellus to arsenate is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenate resistance is exhibited by the ericoid mycorrhizal fungus Hymenoscyphus ericae collected from As-contaminated mine soils. To investigate the mechanism of arsenate resistance, uptake kinetics for arsenate (H(2)AsO(4)(-)), arsenite (H(3)AsO(3)), and phosphate (H(2)PO(4)(-)) were determined in both arsenate-resistant and -non-resistant H. ericae. The uptake kinetics of H(2)AsO(4)(-), H(3)AsO(3), and H(2)PO(4)(-) in both resistant and non-resistant isolates were similar. The presence of 5.0 microM H(2)PO(4)(-) repressed uptake of H(2)AsO(4)(-) and exposure to 0.75 mM H(2)AsO(4)(-) repressed H(2)PO(4)(-) uptake in both H. ericae. Mine site H. ericae demonstrated an enhanced As efflux mechanism in comparison with non-resistant H. ericae and lost approximately 90% of preloaded cellular As (1-h uptake of 0.22 micromol g(-1) dry weight h(-1) H(2)AsO(4)(-)) over a 5-h period in comparison with non-resistant H. ericae, which lost 40% of their total absorbed H(2)AsO(4)(-). As lost from the fungal tissue was in the form of H(3)AsO(3). The results of the present study demonstrate an enhanced H(3)AsO(3) efflux system operating in mine site H. ericae as a mechanism for H(2)AsO(4)(-) resistance. The ecological significance of this mechanism of arsenate resistance is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.