156 resultados para Microstrip lines
Resumo:
BACKGROUND:
Aurora kinases play an essential role in the orchestration of chromosome separation and cytokinesis during mitosis. Small-molecule inhibition of the aurora kinases has been shown to result in inhibition of cell division, phosphorylation of histone H3 and the induction of apoptosis in a number of cell systems. These characteristics have led aurora kinase inhibitors to be considered as potential therapeutic agents.
DESIGN AND METHODS:
Aurora kinase gene expression profiles were assessed in 101 samples from patients with acute myeloid leukemia. Subsequently, aurora kinase inhibitors were investigated for their in vitro effects on cell viability, histone H3 phosphorylation, cell cycle and morphology in acute myeloid leukemia cell lines and primary acute myeloid leukemia samples.
RESULTS:
The aurora kinase inhibitors AZD1152-HQPA and ZM447439 induced growth arrest and the accumulation of hyperploid cells in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. Furthermore, both agents inhibited histone H3 phosphorylation and this preceded perturbations in cell cycle and the induction of apoptosis. Single cell cloning assays were performed on diploid and polyploid cells to investigate their colony-forming capacities. Although the polyploid cells showed a reduced capacity for colony formation when compared with their diploid counterparts, they were consistently able to form colonies.
CONCLUSIONS:
AZD1152-HQPA- and ZM447439 are effective apoptosis-inducing agents in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. However, their propensity to induce polyploidy does not inevitably result in apoptosis.
Resumo:
An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently. In this article the influence of the wave spectrum in the energy range onto field-line random walk is investigated by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behavior of the field-lines. If the energy range spectral index exceeds unity a free-streaming behavior of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field-line wandering.
Resumo:
The role of optical FeIII absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~3560-9200Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed FeIII spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY [plane-parallel, non-local thermodynamic equilibrium (LTE)], with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with the Fiber-fed Extended Range Optical Spectrograph (FEROS), reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of FeIII transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.