142 resultados para Micromechanical Modeling - Finite-element Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element modeling of the formation of pre-loaded damage in cement mantles of orthopaedic joint replacements was presented. The existence of cracking suggested a high level of residual stress. The direction of maximum principal stress vectors corresponded well with the observed crack orientation. Results suggested that cracking depends upon a combination of residual stress, porosity and temperature rise during polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lap joints are widely used in the manufacture of stiffened panels and influence local panel sub-component stability, defining buckling unit dimensions and boundary conditions. Using the Finite Element method it is possible to model joints in great detail and predict panel buckling behaviour with accuracy. However, when modelling large panel structures such detailed analysis becomes computationally expensive. Moreover, the impact of local behaviour on global panel performance may reduce as the scale of the modelled structure increases. Thus this study presents coupled computational and experimental analysis, aimed at developing relationships between modelling fidelity and the size of the modelled structure, when the global static load to cause initial buckling is the required analysis output. Small, medium and large specimens representing welded lap-joined fuselage panel structure are examined. Two element types, shell and solid-shell, are employed to model each specimen, highlighting the impact of idealisation on the prediction of welded stiffened panel initial skin buckling.