101 resultados para Microbial Respiration
Resumo:
Inorganic polyphosphate (polyP) is increasingly being recognized as an important phosphorus sink within the environment, playing a central role in phosphorus exchange and phosphogenesis. Yet despite the significant advances made in polyP research there is a lack of rapid and efficient analytical approaches for the quantification of polyP accumulation in microbial cultures and environmental samples. A major drawback is the need to extract polyP from cells prior to analysis. Due to extraction inefficiencies this can lead to an underestimation of both intracellular polyP levels and its environmental pool size: we observed 23-58% loss of polyP using standard solutions and current protocols. Here we report a direct fluorescence based DAPI assay system which removes the requirement for prior polyP extraction before quantification. This increased the efficiency of polyP detection by 28-55% in microbial cultures suggesting quantitative measurement of the intracellular polyP pool. It provides a direct polyP assay which combines quantification capability with technical simplicity. This is an important step forward in our ability to explore the role of polyP in cellular biology and biogeochemical nutrient cycling.
Resumo:
Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.
Resumo:
Whilst there are a number of methods available to characterise the cell surface hydrophobicity (CSH) and cell surface charge (CSC) of microorganisms, there is still debate concerning the correlation of results between individual methods. In this study, the techniques of bacterial adherence to hydrocarbons (BATH) and hydrophobic interaction chromatography (HTC) were used to measure CSH. Electrostatic interaction chromatography (ESIC) and zeta potential (ZP) measurements were used to determine CSC. To allow meaningful comparisons between the BATH and HIC tests, between ESIC and ZP and also between CSH and CSC, the buffer systems employed in each test were standardised (phosphate buffered saline, pH 7.3, 0.01 mM). Isolates of Staphylococcus epidermidis derived from microbial biofilm were used as the test organism in this study. The isolates examined exhibited primarily medium to high CSH and a highly negative CSC. Good correlation of CSH measurement was observed between the BATH and HIC tests (r = 0.89). Good correlation was observed between ESIC (anionic exchange column) and ZP measurements. No correlations were observed between isolate CSC and either increased or decreased CSH. It is recommended that whenever comparisons of various methods to determine either CSC or CSH (by partitioning methods), the buffer systems should remain constant throughout to achieve consistency of results.
Resumo:
P122 93
Resumo:
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Resumo:
Self-potential and spectral induced polarization responses associated with microbial processes involved in sulphate reduction have been monitored in a Perspex Winogradsky column filled with glass beads and growth medium. Salt-bridge is utilized as an electrolytic contact between experiment and control column. Equally spaced SP electrodes are used in combination of Ag-AgCl electrodes to compare electrodic and SP signals associated with the microbial processes involved in sulphate reduction. This study reveals that magnitude of SP varies from 5 to -2 mV and Electrodic potential 0 to -20 mV at the time of domination (day 39) of sulphate reducing bacteria which are very small in comparison to those measured by fixing both measuring and reference Ag-AgCl electrodes in experiment column. We observed that real and imaginary parts of complex conductivities increase with increase in production of H2S and CO in the experiment column. Both real and imaginary parts of surface complex conductivity vary at low frequencies similar to typical growth curve of bacterial population. Sodium lactate as a carbon source, dissolved in Lagan River water was flushed into the column for biostimulation on 144th day. The dissolved oxygen in flushed fluid might have killed the anaerobes in the column and decrease in complex conductivities similar to death phase of bacteria is observed for one week. The results obtained from this experiment should contribute to further understanding the biogeophysical responses involved in complex environments.
Read More: http://library.seg.org/doi/abs/10.1190/segj092009-001.57