123 resultados para Methanol as fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many lizard species will shed their tail as a defensive response (e.g., to escape a putative predator or aggressive conspecific). This caudal autotomy incurs a number of costs as a result of loss of the tail itself, loss of resources (i.e., stored in the tail or due to the cost of regeneration), and altered behavior. Few studies have examined the metabolic costs of caudal autotomy. A previous study demonstrated that geckos can move faster after tail loss as a result of reduced weight or friction with the substrate; however, there are no data for the effects of caudal autotomy on locomotory energetics. We examined the effect of tail loss on locomotory costs in the Cape dwarf gecko Lygodactylus capensis (similar to 0.9 g) using a novel method for collecting data on small lizards, a method previously used for arthropods. We measured CO2 production during 5-10 min of exhaustive exercise (in response to stimulus) and during a 45-min recovery period. During exercise, we measured speed (for each meter moved) as well as total distance traveled. Contrary to our expectations, tailless geckos overall expended less effort in escape running, moving both slower and for a shorter distance, compared with when they were intact. Tailless geckos also exhibited lower excess CO2 production (CO2 production in excess of normal resting metabolic rate) during exercising. This may be due to reduced metabolically active tissue (tails represent 8.7% of their initial body mass). An alternative suggestion is that a change in energy substrate use may take place after tail loss. This is an intriguing finding that warrants future biochemical investigation before we can predict the relative costs of tail loss that lizards might experience under natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods. We have observed the rotational transition quartets J = 2K – 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results. We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40 arcsec, towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions. While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.