82 resultados para Medical studies and experimental treatments
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 1
Resumo:
The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.
Resumo:
Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5 M NH4NO3) and acid leaching using 1 M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH3-TPD and TGA. Ion-exchange with NH4+ of natural zeolites results in the exchange of the Na+ and Ca2+ cations and the partial exchange of the Fe3+ and Mg2+ cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
(2004) The Broad and Narrow: Case Studies and International Perspectives on Rural Women’s Research Rural Society Vol. 14 No. 2 pp. 254-270
Resumo:
A reconfigurable reflectarray which exploits the dielectric anisotropy of liquid crystals (LC) has been designed to operate in the frequency range from 96 to 104 GHz. The unit cells are composed of three unequal length parallel dipoles placed above an LC substrate. The reflectarray has been designed using an accurate model which includes the effects of anisotropy and inhomogeneity. An effective permittivity that accounts for the real effects of the LC has also been used to simplify the analysis and design of the unit cells. The geometrical parameters of the cells have been adjusted to simultaneously improve the bandwidth, maximize the tunable phase-range and reduce the sensitivity to the angle of incidence. The performance of the LC based unit cells has been experimentally evaluated by measuring the reflection amplitude and phase of a reflectarray consisting of 52x54 identical cells. The good agreement between measurements and simulations validate the analysis and design techniques and demonstrate the capabilities of the proposed reflectarray to provide beam scanning in F band.