68 resultados para Matrix of complex negotiation
Resumo:
Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the
Resumo:
Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Resumo:
Objective: To apply the UK Medical Research Council (MRC) framework for development and evaluation of trials of complex interventions to a primary healthcare intervention to promote secondary prevention of coronary heart disease. Study Design: Case report of intervention development. Methods: First, literature relating to secondary prevention and lifestyle change was reviewed. Second, a preliminary intervention was modeled, based on literature findings and focus group interviews with patients (n = 23) and staff (n = 29) from 4 general practices. Participants’ experiences of and attitudes toward key intervention components were explored. Third, the preliminary intervention was pilot-tested in 4 general practices. After delivery of the pilot intervention, practitioners evaluated the training sessions, and qualitative data relating to experiences of the intervention were collected using semistructured interviews with staff (n = 10) and patient focus groups (n = 17). Results: Literature review identified 3 intervention components: a structured recall system, practitioner training, and patient information. Initial qualitative data identified variations in recall system design, training requirements (medication prescribing, facilitating behavior change), and information appropriate to the prospective study participants. Identifying detailed structures within intervention components clarified how the intervention could be tailored to individual practice, practitioner, and patient needs while preserving the theoretical functions of the components. Findings from the pilot phase informed further modeling of the intervention, reducing administrative time, increasing practical content of training, and omitting unhelpful patient information. Conclusion: Application of the MRC framework helped to determine the feasibility and development of a complex intervention for primary care research.
Resumo:
A new approach to evaluating all multiple complex roots of analytical function f(z) confined to the specified rectangular domain of complex plane has been developed and implemented in Fortran code. Generally f (z), despite being holomorphic function, does not have a closed analytical form thereby inhibiting explicit evaluation of its derivatives. The latter constraint poses a major challenge to implementation of the robust numerical algorithm. This work is at the instrumental level and provides an enabling tool for solving a broad class of eigenvalue problems and polynomial approximations.
Resumo:
Aim. This paper is a report of a study to describe how treatment fidelity is being enhanced and monitored, using a model from the National Institutes of Health Behavior Change Consortium. Background. The objective of treatment fidelity is to minimize errors in interpreting research trial outcomes, and to ascribe those outcomes directly to the intervention at hand. Treatment fidelity procedures are included in trials of complex interventions to account for inferences made from study outcomes. Monitoring treatment fidelity can help improve study design, maximize reliability of results, increase statistical power, determine whether theory-based interventions are responsible for observed changes, and inform the research dissemination process. Methods. Treatment fidelity recommendations from the Behavior Change Consortium were applied to the SPHERE study (Secondary Prevention of Heart DiseasE in GeneRal PracticE), a randomized controlled trial of a complex intervention. Procedures to enhance and monitor intervention implementation included standardizing training sessions, observing intervention consultations, structuring patient recall systems, and using written practice and patient care plans. The research nurse plays an important role in monitoring intervention implementation. Findings. Several methods of applying treatment fidelity procedures to monitoring interventions are possible. The procedure used may be determined by availability of appropriate personnel, fiscal constraints, or time limits. Complex interventions are not straightforward and necessitate a monitoring process at trial stage. Conclusion. The Behavior Change Consortium’s model of treatment fidelity is useful for structuring a system to monitor the implementation of a complex intervention, and helps to increase the reliability and validity of evaluation findings.
Resumo:
The solubility and uniform distribution of lanthanide complexes in sol-get glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide beta-diketonate complexes (Ln = Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(Ill) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
For S-nitrosothiols and peroxynitrite to interfere with the activity of mitochondrial complex I, prior transition of the enzyme from its active (A) to its deactive, dormant (D) state is necessary. We now demonstrate accumulation of the D-form of complex I in human epithelial kidney cells after prolonged hypoxia. Upon reoxygenation after hypoxia there was an initial delay in the return of the respiration rate to normal. This was due to the accumulation of the D-form and its slow, substrate-dependent reconversion to the A-form. Reconversion to the A-form could be prevented by prolonged incubation with endogenously generated NO. We propose that the hypoxic transition from the A-form to the D-form of complex I may be protective, because it would act to reduce the electron burst and the formation of free radicals during reoxygenation. However, this may become an early pathophysiological event when NO-dependent formation of S-nitrosothiols or peroxynitrite structurally modifies complex I in its D-form and impedes its return to the active state. These observations provide a mechanism to account for the severe cell injury that follows hypoxia and reoxygenation when accompanied by NO generation.
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
Nitric oxide is known to cause persistent inhibition of mitochondrial respiration as a result of S-nitrosation of NADH: ubiquinone oxidoreductase (complex I) (Clementi, E., Brown, G. C., Feelisch, M., and Moncada, S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7631-7636). Little is known about whether such nitrosation occurs in physiological conditions and, if so, what are the possible cellular mechanisms. We have now found that the conformational state (active/deactive transition (Vinogradov, A. D. (1998) Biochim. Biophys. Acta 1364, 169-185)) of mitochondrial complex I is an important factor for the interaction of the enzyme with nitrosothiols and peroxynitrite. Only the deactivated, idle form of complex I was susceptible to inhibition by nitrosothiols and peroxynitrite. In contrast, the active form of the enzyme was insensitive to such treatment. Neither form of complex I was inhibited by nitric oxide itself. Our data suggest that the process of active/deactive transition plays an important role in the regulation of complex I activity and cellular respiration by nitric oxide. The implications of this finding for hypoxic or pathophysiological conditions in vivo are discussed.
Resumo:
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(->+)/2e(-) indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(->+)/2e(-). This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.
Resumo:
This paper studies the Demmel condition number of Wishart matrices, a quantity which has numerous applications to wireless communications, such as adaptive switching between beamforming and diversity coding, link adaptation, and spectrum sensing. For complex Wishart matrices, we give an exact analytical expression for the probability density function (p.d.f.) of the Demmel condition number, and also derive simplified expressions for the high tail regime. These results indicate that the condition of complex Wishart matrices is dominantly decided by the difference between the matrix dimension and degree of freedom (DoF), i.e., the probability of drawing a highly ill conditioned matrix decreases considerably when the difference between the matrix dimension and DoF increases. We further investigate real Wishart matrices, and derive new expressions for the p.d.f. of the smallest eigenvalue, when the difference between the matrix dimension and DoF is odd. Based on these results, we succeed to obtain an exact p.d.f. expression for the Demmel condition number, and simplified expressions for the high tail regime.
Resumo:
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.
Resumo:
Complex I is the only component of the eukaryotic respiratory chain of which no high-resolution structure is yet available. A notable feature of mitochondrial complex I is the so-called active/de-active conformational transition of the idle enzyme from the active (A) to the de-active, (D) form. Using an amine- and sulfhydryl-reactive crosslinker of 6.8 Å length (SPDP) we found that in the D-form of complex I the ND3 subunit crosslinked to the 39 kDa (NDUFA9) subunit. These proteins could not be crosslinked in the A-form. Most likely, both subunits are closely located in the critical junction region connecting the peripheral hydrophilic domain to the membrane arm of the enzyme where the entrance path for substrate ubiquinone is and where energy transduction takes place.