49 resultados para Magnetism in materials


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we demonstrate the synthesis of a TiO2/PEDOT:PSS nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. The dispersion of the TiO2 nanoparticles is enhanced after microplasma processing, and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. We have observed increased TiO2/PEDOT:PSS nanocomposite electrical conductivity due to microplasma processing. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding, which is expected to have a significant benefit in materials processing with inorganic nanoparticles for wide range of applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulation was carried out to acquire an in-depth understanding of the flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. The key findings were that (i) the substrate material underneath the cutting tool was observed for the first time to experience a rotational flow akin to fluids at all the tested temperatures up to 1200 K. (ii) The degree of flow in terms of vorticity was found higher on the (1 1 1) crystal plane signifying better machinability on this orientation in accord with the current pool of knowledge (iii) an increase in the machining temperature reduces the springback effect and thereby the elastic recovery and (iv) the cutting orientation and the cutting temperature showed significant dependence on the location of the stagnation region in the cutting zone of the substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbons are the main electrode materials used in supercapacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density capacity will improve their potential for commercial implementation.
In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for supercapacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electrochemical double layer (ECDL) capacitance and energy density.
The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte.
This perspective will provide an overview of the current state of the art research on supercapacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance supercapacitors for different applications including those requiring mechanical flexibility and biocompatibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.