88 resultados para Magnetic field effects
Resumo:
Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases1. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise2, 3. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9–55 G (refs 4,5,6,7). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 ± 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.
Resumo:
The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.
Resumo:
The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.
Resumo:
Magnetic neutral loop discharges (NLDs) can be operated at significantly lower pressures than conventional radio-frequency (rf) inductively coupled plasmas (ICPs). These low pressure conditions are favourable for technological applications, in particular anisotropic etching. An ICP–NLD has been designed providing excellent diagnostics access for detailed investigations of fundamental mechanisms. Spatially resolved Langmuir probe measurements have been performed in the plasma production region (NL region) as well as in the remote application region downstream from the NL region. Depending on the NL gradient two different operation modes have been observed exhibiting different opportunities for control of plasma uniformity. The efficient operation at comparatively low pressures results in ionization degrees exceeding 1%. In this regime neutral dynamics has to be considered and can influence neutral gas and process uniformity. Neutral gas depletion through elevated gas temperatures and high ionization rates have been quantified. At pressures above 0.1 Pa, gas heating is the dominant depletion mechanism. At lower pressures neutral gas is predominantly depleted through high ionization rates and rapid transport of ions by ambipolar diffusion along the magnetic field lines. Non-uniform profiles of the ionization rate can, therefore, result in localized neutral gas depletion and non-uniform processing. We have also investigated the electron dynamics within the radio-frequency cycle using phase resolved optical emission spectroscopy and Thomson scattering. In these measurements electron drift phenomena along the NL torus have been identified.
Resumo:
Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.
Resumo:
Spatial structures of plasma parameters in a radio-frequency inductively coupled magnetic neutral loop discharge are investigated under various parameter variations using spatially resolved Langmuir probe measurements. A strong coupling between the plasma production region, in the neutral loop (NL) plane, and the axially remote substrate region is observed. The two regions are connected through the separatrices and therefore, spatial profiles in the substrate region are strongly influenced by the plasma production region and the structure of the separatrices. The electron temperature in the plasma production region peaks in the centre of the NL while the maximum in electron density is shifted radially inwards due to diffusion. Details of the structures in both regions, the production region and the substrate region, are determined through the position of the NL and the gradient of the inhomogeneous magnetic field around the NL confinement region. Parameter combinations are found providing higher plasma densities and better uniformity than in common inductively coupled plasmas without applying an additional magnetic field. The uniformity can be further improved using temporal variations of the magnetic field structure.
Resumo:
A planar inductively coupled radio-frequency (rf) magnetic neutral loop discharge has been designed. It provides diagnostic access to both the main plasma production region as well as a remote plane for applications. Three coaxial coils are arranged to generate a specially designed inhomogeneous magnetic field structure with vanishing field along a ring in the discharge-the so-called neutral loop (NL). The plasma is generated by applying an oscillating rf electric field along the NL, induced through a four-turn, planar antenna operated at 13.56 MHz. Electron density and temperature measurements are performed under various parameter variations. Collisionless electron heating in the NL region allows plasma operation at comparatively low pressures, down to 10(-2) Pa, with a degree of ionization in the order of several per cent. Conventional plasma operation in inductive mode without applying the magnetic field is less efficient, in particular in the low pressure regime where the plasma cannot be sustained without magnetic fields.
Resumo:
High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.
Resumo:
High-cadence, multiwavelength, optical observations of solar magnetic bright points (MBPs), captured at the disk center using the ROSA and IBIS imaging systems on the Dunn Solar Telescope, are presented. MBPs manifesting in the Na I D-1 core are found to preferentially exist in regions containing strong downflows, in addition to cospatial underlying photospheric magnetic field concentrations. Downdrafts within Na I D-1 bright points exhibit speeds of up to 7 km s(-1), with preferred structural symmetry in intensity, magnetic field, and velocity profiles about the bright point center. Excess intensities associated with G-band and Ca II K observations of MBPs reveal a power-law trend when plotted as a function of the magnetic flux density. However, Na I D-1 observations of the same magnetic features indicate an intensity plateau at weak magnetic field strengths below approximate to 150 G, suggesting the presence of a two-component heating process: one which is primarily acoustic and the other predominantly magnetic. We suggest that this finding is related to the physical expansion of magnetic flux tubes, with weak field strengths (approximate to 50 G) expanding by similar to 76%, compared to a similar to 44% expansion when higher field strengths (approximate to 150 G) are present. These observations provide the first experimental evidence of rapid downdrafts in Na I D-1 MBPs and reveal the nature of a previously unresolved intensity plateau associated with these structures.
Resumo:
The collimating effect of self-generated magnetic fields on fast-electron transport in solid aluminium targets irradiated by ultra-intense, picosecond laser pulses is investigated in this study. As the target thickness is varied in the range of 25 mu m to 1.4 mm, the maximum energies of protons accelerated from the rear surface are measured to infer changes in the fast-electron density and therefore the divergence of the fast-electron beam transported through the target. Purely ballistic spreading of the fast-electrons would result in a much faster decrease in the maximum proton energy with increasing target thickness than that measured. This implies that some degree of 'global' magnetic pinching of the fast-electrons occurs, particularly for thick (>400 mu m) targets. Numerical simulations of electron transport are in good agreement with the experimental data and show that the pinching effect of the magnetic field in thin targets is significantly reduced due to disruption of the field growth by refluxing fast-electrons.
Resumo:
The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.
Resumo:
PURPOSE:
To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication.
METHODS AND MATERIALS:
Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator.
RESULTS:
Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the a-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response.
CONCLUSIONS:
These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.
Resumo:
We study multipartite correlations and nonlocality in an isotropic Ising ring under transverse magnetic field at both zero and finite temperature. We highlight parity-induced differences between the multipartite Bell-like functions used in order to quantify the degree of nonlocality within a ring state and reveal a mechanism for the passive protection of multipartite quantum correlations against thermal spoiling effects that is clearly related to the macroscopic properties of the ring model.
Resumo:
The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with an adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.
Resumo:
Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.