73 resultados para Macadamia nut -- Genetics.
Resumo:
This study investigates age-related shifts in the relative importance of systolic (SBP) and diastolic (DBP) blood pressures as predictors of stroke and whether these relations are influenced by other cardiovascular risk factors. Using 34 European cohorts from the MOnica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project with baseline between 1982 and 1997, 68 551 subjects aged 19 to 78 years, without cardiovascular disease and not receiving antihypertensive treatment, were included. During a mean of 13.2 years of follow-up, stroke incidence was 2.8%. Stroke risk was analyzed using hazard ratios per 10-mm Hg/5-mm Hg increase in SBP/DBP by multivariate-adjusted Cox regressions, including SBP and DBP simultaneously. Because of nonlinearity, DBP was analyzed separately for DBP =71 mm Hg and DBP
Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project
Resumo:
In 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Populations of many freshwater species are becoming increasingly threatened as a result of a wide range of anthropogenically mediated factors. In the present study, we wanted to assess levels and patterns of genetic diversity in Ireland's sole population of the River water crowfoot (Ranunculus fluitans), which is restricted to a 12 km stretch of a single river, to assist the formation of conservation strategies. Analysis using amplified fragment length polymorphism (AFLP) indicated comparable levels of genetic diversity to those exhibited by a more extensive population of the species in England, and revealed no evidence of clonal reproduction. Allele-specific PCR analysis of five nuclear single nucleotide polymorphisms (SNPs) indicated no evidence of hybridization with its more abundant congener Ranunculus penicillatus, despite previous anecdotal reports of the occurrence of hybrids. Although the population currently exhibits healthy levels of genetic diversity and is not at risk of genetic assimilation via hybridization with R. penicillatus, it still remains vulnerable to other factors such as stochastic events and invasive species. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Both advocacy for and critiques of the Human Genome Project assume a self-sustaining relationship between genetics and. medicalization. However, this assumption ignores the ways in which the meanings of genetic research are conditional on its position in sequences of events. Based, on analyses of three conditions for which at least one putative gene or genetic marker has been identified, this article argues that critical junctures in the institutional stabilization of phenotypes and the mechanisms that sustain such classifications over time configure the practices and meanings of genetic research. Path dependence is critical to understanding the lack of consistent fit between genetics and medlcalization.
Resumo:
Science journalists call upon experts for background and for clarification and comment on scientific findings. This paper examines how science writers choose and use experts, and it focuses on several cases of reporting about genetics and behavior. Our research included two sources of data: interviews with 15 science reporters and three print media samples of coverage of genetics and behavior - alcoholism (between 1980-1995), homosexuality (in 1993 and 1995), and mental illness (between 1970-1995). Science reporters seek relevant and specific experts for nearly every story. Good sources are knowledgeable, are connected to prestigious institutions, are direct and articulate and don't overqualify statements, and they return phone calls. The mean number of experts quoted was 2.8 per story, differing for alcoholism (3.5), homosexuality (2.8), and mental illness (2.6). Researchers and scientists predominated among experts quoted. Quotes were used to provide context, give legitimization, as explication, to provide a kind of balance, and to outline implications. For the homosexuality sample, a significantly greater percentage of activists and advocates were quoted (21 percent compared with 5 percent and 1 percent in other samples, X <0.0001). "Lay" quotes for alcoholism and mental illness were minimal. Except for homosexuality, whose advocates are organized, those "affected" do not have a voice in genetics news stories.
Resumo:
Summary: We present a new R package, diveRsity, for the calculation of various diversity statistics, including common diversity partitioning statistics (?, G) and population differentiation statistics (D, GST ', ? test for population heterogeneity), among others. The package calculates these estimators along with their respective bootstrapped confidence intervals for loci, sample population pairwise and global levels. Various plotting tools are also provided for a visual evaluation of estimated values, allowing users to critically assess the validity and significance of statistical tests from a biological perspective. diveRsity has a set of unique features, which facilitate the use of an informed framework for assessing the validity of the use of traditional F-statistics for the inference of demography, with reference to specific marker types, particularly focusing on highly polymorphic microsatellite loci. However, the package can be readily used for other co-dominant marker types (e.g. allozymes, SNPs). Detailed examples of usage and descriptions of package capabilities are provided. The examples demonstrate useful strategies for the exploration of data and interpretation of results generated by diveRsity. Additional online resources for the package are also described, including a GUI web app version intended for those with more limited experience using R for statistical analysis. © 2013 British Ecological Society.
Resumo:
Non-invasive population genetics has become a valuable tool in ecology and conservation biology, allowing genetic studies of wild populations without the need to catch, handle or even observe the study subjects directly. We address some of the concerns regarding the limitations of using non-invasive samples by comparing the quality of population genetic information gained through DNA extracted from faecal samples and biopsy samples of two elusive bat species, Myotis mystacinus and Myotis nattereri. We demonstrate that DNA extracted from faeces and tissue samples gives comparable results for frequency based population genetic analyses, despite the occurrence of genotyping errors when using faecal DNA. We conclude that non-invasive genetic sampling for population genetic analysis in bats is viable, and although more labour-intensive and expensive, it is an alternative to tissue sampling, which is particularly pertinent when specimens are rare, endangered or difficult to capture. © 2012 Museum and Institute of Zoology PAS.
Resumo:
New-onset diabetes after transplantation is a common complication that reduces recipient survival. Research in renal transplant recipients has suggested that pancreatic ß-cell dysfunction, as opposed to insulin resistance, may be the key pathologic process. In this study, clinical and genetic factors associated with new-onset diabetes after transplantation were identified in a white population. A joint analysis approach, with an initial genome-wide association study in a subset of cases followed by de novo genotyping in the complete case cohort, was implemented to identify single-nucleotide polymorphisms (SNPs) associated with the development of new-onset diabetes after transplantation. Clinical variables associated with the development of diabetes after renal transplantation included older recipient age, female sex, and percentage weight gain within 12 months of transplantation. The genome-wide association study identified 26 SNPs associated with new-onset diabetes after transplantation; this association was validated for eight SNPs (rs10484821, rs7533125, rs2861484, rs11580170, rs2020902, rs1836882, rs198372, and rs4394754) by de novo genotyping. These associations remained significant after multivariate adjustment for clinical variables. Seven of these SNPs are associated with genes implicated in ß-cell apoptosis. These results corroborate recent clinical evidence implicating ß-cell dysfunction in the pathophysiology of new-onset diabetes after transplantation and support the pursuit of therapeutic strategies to protect ß cells in the post-transplant period.
Resumo:
In a scenario of increasing life expectancy worldwide, it is mandatory to identify the characteristics of a healthy aging phenotype, including survival predictors, and to disentangle those related to environment/lifestyle versus those related to familiarity/genetics. To this aim we comprehensively characterised a cohort of 1,160 Italian subjects of 90 years and over (90+, mean age 93 years; age range 90-106 years) followed for 6 years survival, belonging to 552 sib-ships (familiar longevity) recruited (2005-2008) within the EU-funded GEHA project in three Italian geographic areas (Northern, Central and Southern Italy) different for urban/rural and socio-economical characteristics. On the whole, the following factors emerged as significant predictors of survival after 90 years of age: absence of cognitive impairment and physical disability, high hand grip strength scores and body mass index (BMI) values, "excellent/good" self-reported health, high haemoglobin and total cholesterol levels and low creatinine levels. These parameters, excluding BMI values, were also significantly associated within sib-ships, suggesting a strong familial/genetic component. Geographical micro-heterogeneity of survival predictors emerged, such as functional and physical status being more important in Southern than in Central and Northern Italy. In conclusion, we identified modifiable survival predictors related to specific domains, whose role and importance vary according to the geographic area considered and which can help in interpreting the genetic results obtained by the GEHA project, whose major aim is the comprehensive evaluation of phenotypic and genetic data.
Resumo:
The global prevalence of diabetic nephropathy is rising in parallel with the increasing incidence of diabetes in most countries. Unfortunately, up to 40 % of persons diagnosed with diabetes may develop kidney complications. Diabetic nephropathy is associated with substantially increased risks of cardiovascular disease and premature mortality. An inherited susceptibility to diabetic nephropathy exists, and progress is being made unravelling the genetic basis for nephropathy thanks to international research collaborations, shared biological resources and new analytical approaches. Multiple epidemiological studies have highlighted the clinical heterogeneity of nephropathy and the need for better phenotyping to help define important subgroups for analysis and increase the power of genetic studies. Collaborative genome-wide association studies for nephropathy have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms, but progress towards clinically relevant risk prediction models for diabetic nephropathy has been slow. This review summarises the current status, recent developments and ongoing challenges elucidating the genetics of diabetic nephropathy.