168 resultados para MULTIPHOTON IONIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron impact ionization of highly charged ions is investigated. Using a relativistic distorted wave Born approximation, we explore the possible effects that should be observable in a high-energy electron impact ionization (e, 2e) coincidence experiment involving multi-charged ions. We present calculations of triple-differential cross sections. We will focus on relativistic and distortion effects and consider geometries where these may be easily observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A joint theoretical-experimental study of the transfer ionization process p + He -> H-0 + He2+ + e(-) is presented. For the first time all particles in the final state have been detected in triple coincidence. This fully differential measurement is in good agreement with a theoretical model where the target is described by a wavefunction containing both radial and angular correlation terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a kinematically complete experiment and calculations on single ionization in 100 MeV/amu C6+ + He collisions. For electrons ejected into the scattering plane (defined by the initial and final projectile momentum vectors) our first- and higher-order calculations are in good agreement with the data. In the plane perpendicular to the scattering plane and containing the initial projectile axis a strong forward-backward asymmetry is observed. In this plane both the first-order and the higher-order calculations do not provide good agreement neither with the data nor amongst each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the ionization of helium (fie) in collision with antiprotons (p) in the energy range from 10 keV to 1000 keV. We adopt a semiclassical single center close coupling approach in which the wave function for the electron is expanded in a B-spline basis centered on the nucleus of the He atom, The calculations are performed using two different models: the independent particle (IP) model and the one-electron (OE) approximation. The interaction between the active electron and the rest of the atom, i.e. passive electron and nucleus, is represented by a model potential. The results obtained are compared with experimental data as well as with existing theoretical calculations. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the ionization of H(1s), He+(1s) and He+(2s) by antiprotons in the energy range from 0.1 to 500 keV. We adopt a semiclassical single centre close-coupling approach in which the wavefunction for the electron is expanded in a B-spline basis centred on the nucleus of the atom/ion. Comparison is made with existing theoretical calculations and available experimental data. The results are encouraging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a physical mechanism that leads to the emergence of secondary threshold laws in processes of multiple ionization of atoms. We argue that the removal of n electrons (n>2) from a many-electron atom may proceed via intermediate resonant states of the corresponding doubly charged ion. For atoms such as rare gases, the density of such resonances in the vicinity of subsequent ionization thresholds is high. As a result, the appearance energies for multiply charged ions are close to these thresholds, while the effective power indices mu in the near-threshold energy dependence of the cross section, sigmaproportional toE(mu), are lower compared to those from the Wannier theory. This provides a possible explanation of the recent experimental results of B. Gstir [Nucl. Instrum. Methods Phys. Res. B 205, 413 (2003)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense-field ionization of the hydrogen molecular ion by linearly polarized light is modelled by direct solution of the fixed-nuclei time-dependent Schrodinger equation and compared with recent experiments. Parallel transitions are calculated using algorithms which exploit massively parallel computers. We identify and calculate dynamic tunnelling ionization resonances that depend on laser wavelength and intensity, and molecular bond length. Results for lambda similar to 1064 nm are consistent with static tunnelling ionization. At shorter wavelengths lambda similar to 790 nm large dynamic corrections are observed. The results agree very well with recent experimental measurements of the ion spectra. Our results reproduce the single peak resonance and provide accurate ionization rate estimates at high intensities. At lower intensities our results confirm a double peak in the ionization rate as the bond length varies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single- and multiphoton detachment rates have been calculated for K- using the R-matrix Floquet approach. Single-photon detachment rates, obtained at a laser field peak intensity of 10(9) W cm(-2), are discussed and compared with other theoretical work. Two-photon detachment rates at the same intensity have also been obtained, and similarities with results from earlier calculations for Li- and Na- are discussed. Three-photon rates are also presented at this laser intensity, and are compared and contrasted with those arising in the single-photon case, since both involve resonance structure with P-1(o) symmetry. The influence of resonances such as the 5s(2) S-1(e) doubly excited state and excitations of the residual atom are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron energy distributions of singly and doubly ionized helium in an intense 390 nm laser field have been measured at two intensities (0.8 PW/cm(2) and 1.1 PW/cm(2), where PW equivalent to 10(15) W/cm(2)). Numerical solutions of the full-dimensional time-dependent helium Schrodinger equation show excellent agreement with the experimental measurements. The high-energy portion of the two-electron energy distributions reveals an unexpected 5U(p) cutoff for the double ionization (DI) process and leads to a proposed model for DI below the quasiclassical threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent results for proton-argon total ionization cross sections [Kirchner Phys. Rev. Lett. 79, 1658 (1997)] show large disagreement between theory and experiment for energies below 80 keV. To address this problem we have employed a recently developed theoretical method with a more pragmatic approach to the charge screening both in the initial and final channels. The target is considered as a one-electron atom and the interactions between this active electron and remaining target electrons are treated by a model potential including both short- and long-range effects. In the final channel the usual product of two continuum distorted wave functions each associated with a distinct electron-nucleus interaction is used. New results in the present calculation show good agreement in total cross sections for the energy range 10-300 keV with the measurement of Rudd [Rev. Mod. Phys. 57, 965 (1985)].