49 resultados para METALLORGANIC DECOMPOSITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigate an adaptive decomposition and ordering strategy that automatically divides examinations into difficult and easy sets for constructing an examination timetable. The examinations in the difficult set are considered to be hard to place and hence are listed before the ones in the easy set in the construction process. Moreover, the examinations within each set are ordered using different strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy set. During the construction process, examinations that cannot be scheduled are identified as the ones causing infeasibility and are moved forward in the difficult set to ensure earlier assignment in subsequent attempts. On the other hand, the examinations that can be scheduled remain in the easy set.

Within the easy set, a new subset called the boundary set is introduced to accommodate shuffling strategies to change the given ordering of examinations. The proposed approach, which incorporates different ordering and shuffling strategies, is explored on the Carter benchmark problems. The empirical results show that the performance of our algorithm is broadly comparable to existing constructive approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralized agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus, it is desirable to use a scalable decentralized algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for peak minimization based on Dantzig-Wolfe decomposition (DWD). In addition, a time weighted maximization option is included in the cost function, which improves the quality of service for devices seeking to receive their desired energy sooner rather than later. This paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.