59 resultados para Lift (Aerodynamics)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References

[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an implementation of the popular method of Class-Shape Transformation for aerofoil design within SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities from the new parameterisation is introduced, enabling the calculation of gradients with respect to new design variables. To assess the accuracy and efficiency of the alternative approach, two transonic optimisation problems are investigated: an inviscid problem with multiple constraints and a viscous problems without any constraints. Results show the new parameterisation obtaining reliable optimums, with similar levels of
performance of the software native parameterisations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This study was designed to evaluate the structures, muscles, and fasciae of which the modiolus is composed. It can aid in the understanding and, therefore, the utilization of plastic surgery for the aesthetic or reconstructive treatment of that region, especially the angle of the mouth. Methods: Dissections of the midface were done on five different cadavers. They were of different races (3 males, 2 females). The anatomy of the modiolus was studied in detail. New anatomical observations were classified as type I through type VI. Results: The perifacial artery fascia contributed to the modiolus in four (80%) specimens and was not part of it in 1 (20%) specimen. The facial artery was anterior to it in one (20%) specimen, lateral in four (80%) specimens, and never medial to it. No significant relationship was observed between the perifacial artery fascia contribution to the modiolus and gender or race. Also, the location of the facial artery lateral or anterior to the modiolus was not significantly related to gender or race. In addition, the deep and superficial fasciae of the face converged not anterior to the masseter muscle but actually at the modiolus, which was different from observations made by others. Conclusion: The modiolus is of critical importance in aesthetic and reconstructive plastic surgery of the face. © 2008 Springer Science+Business Media, LLC and International Society of Aesthetic Plastic Surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fresh concrete can exhibit different rheological behavior when at rest than when flowing. This difference is due to thixotropy, which can have important consequences for formwork pressure, multi-lift casting, slip-form paving, pumping, and segregation resistance. This TechNote defines thixotropy and distinguishes it from other changes in rheological properties; discusses the origins of, test methods for measuring, and factors affecting thixotropy; and concludes with its applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An environment has been created for the optimisation of aerofoil profiles with inclusion of small surface features. For TS wave dominated flows, the paper examines the consequences of the addition of a depression on the aerodynamic optimisation of an NLF aerofoil, and describes the geometry definition fidelity and optimisation algorithm employed in the development process. The variables that define the depression for this optimisation investigation have been fixed, however a preliminary study is presented demonstrating the sensitivity of the flow to the depression characteristics. Solutions to the optimisation problem are then presented using both gradient-based and genetic algorithm techniques, and for accurate representation of the inclusion of small surface perturbations it is concluded that a global optimisation method is required for this type of aerofoil optimisation task due to the nature of the response surface generated. When dealing with surface features, changes in the transition onset are likely to be of a non-linear nature so it is highly critical to have an optimisation algorithm that is robust, suggesting that for this framework, gradient-based methods alone are not suited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear aerospike nozzles are envisaged as a possible device able to improve launcher engine performance. One of the most interesting properties of these nozzles is the possibility of a good integration with the vehicle. Tb improve the knowledge of the flow-field and performance of aerospike nozzles, they are studied numerically, with particular attention to the differences between the basic two-dimensional nozzle, usually considered in the design phase, and the more realistic three-dimensional nozzle. The study considers different plug lengths and ambient pressures to assess the role of the linear plug side truncation on the base pressure behavior. Numerical tests are carried out at supersonic flight Mach number. Copyright © 2005 by M. Geron and R. Paciorri.F. Nasuti, F. Sabetta, E. Martelli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The category of rational O(2)-equivariant cohomology theories has an algebraic model A(O(2)), as established by work of Greenlees. That is, there is an equivalence of categories between the homotopy category of rational O(2)-equivariant spectra and the derived category of the abelian model DA(O(2)). In this paper we lift this equivalence of homotopy categories to the level of Quillen equivalences of model categories. This Quillen equivalence is also compatible with the Adams short exact sequence of the algebraic model.