48 resultados para LOCAL SCALE-INVARIANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical inactivity is the fourth leading risk factor for global mortality, with most of these deaths occurring in low and middle-income countries (LMICs) like India. Research from developed countries has consistently demonstrated associations between built environment features and physical activity levels of populations. The development of culturally sensitive and reliable measures of the built environment is a necessary first step for accurate analysis of environmental correlates of physical activity in LMICs. This study systematically adapted the Neighborhood Environment Walkability Scale (NEWS) for India and evaluated aspects of test-retest reliability of the adapted version among Indian adults. Cultural adaptation of the NEWS was conducted by Indian and international experts. Semi-structured interviews were conducted with local residents and key informants in the city of Chennai, India. At baseline, participants (N = 370; female = 47.2%) from Chennai completed the adapted NEWS-India surveys on perceived residential density, land use mix-diversity, land use mix-access, street connectivity, infrastructure and safety for walking and cycling, aesthetics, traffic safety, and safety from crime. NEWS-India was administered for a second time to consenting participants (N = 62; female = 53.2%) with a gap of 2–3 weeks between successive administrations. Qualitative findings demonstrated that built environment barriers and constraints to active commuting and physical activity behaviors intersected with social ecological systems. The adapted NEWS subscales had moderate to high test-retest reliability (ICC range 0.48–0.99). The NEWS-India demonstrated acceptable measurement properties among Indian adults and may be a useful tool for evaluation of built environment attributes in India. Further adaptation and evaluation in rural and suburban settings in India is essential to create a version that could be used throughout India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.