240 resultados para Kinetic-ART
Resumo:
The kinetic resolution of racemic sulfoxides by dimethyl sulfoxide (DMSO) reductases was investigated with a range of microorganisms. Three bacterial isolates (provisionally identified as Citrobacter braakii, Klebsiella sp. and Serratia sp.) expressing DMSO reductase activity were isolated from environmental samples by anaerobic enrichment with DMSO as terminal electron acceptor. The organisms reduced a diverse range of racemic sulfoxides to yield either residual enantiomer depending upon the strain used. C. braakii DMSO-11 exhibited wide substrate specificity that included dialkyl, diaryl and alkylaryl sulfoxides, and was unique in its ability to reduce the thiosulfinate 1,4-dihydrobenzo-2, 3-dithian-2-oxide. DMSO reductase was purified from the periplasmic fraction of C. braakii DMSO-11 and was used to demonstrate unequivocally that the DMSO reductase was responsible for enantiospecific reductive resolution of racemic sulfoxides.
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Highly charged ions have been used to study the sputtering of positive molecular fragments from mercaptoundecanoic acid and dodecanethiol self-assembled monolayers on gold surfaces. The samples were bombarded with Arq+ (42n+, and Cn+1O2H2n + 1+ from mercaptoundecanoic and H+, CnH2n+, and Cn+1H2n + 3+ from dodecanethiol. The proton yields were increased with larger charge state q of the highly charged ion (HCI) in both samples, scaling as qgamma, with gamma~5. The charge state dependence is discussed in terms of electron transfer to the HCI. The final yield of protons depends on molecular functional group characteristics, orientation on the surface, and reneutralization phenomena.
Resumo:
Water Research, 40 14 (2006) 2645.
Resumo:
The kinetics of the acid-catalysed hydrolysis of cellobiose in the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, was studied as a model for general lignocellulosic biomass hydrolysis in ionic liquid systems. The results show that the rate of the two competing reactions, polysaccharide hydrolysis and sugar decomposition, vary with acid strength, and that for acids with an aqueous pK(a) below approximately zero, the hydrolysis reaction is significantly faster than the degradation of glucose, thus allowing hydrolysis to be performed with a high selectivity in glucose. In tests with soluble cellulose, hemicellulose (xylan), and lignocellulosic biomass (Miscanthus grass), comparable hydrolysis rates were observed with bond scission occurring randomly along the biopolymer chains, in contrast to end-group hydrolysis observed with aqueous acids.