58 resultados para Juliana, Saint, of Nicomedia.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-Zone modelling is used to assess three 1D impeller loss model collections. An automotive turbocharger centrifugal compressor is used for evaluation. The individual 1D losses are presented relative to each other at three tip speeds to provide a visual description of each author’s perception of the relative importance of each loss. The losses are compared with their resulting prediction of pressure ratio and efficiency, which is further compared with test data; upon comparison, a combination of the 1D loss collections is identified as providing the best performance prediction. 3D CFD simulations have also been carried out for the same geometry using a single passage model. A method of extracting 1D losses from CFD is described and utilised to draw further comparisons with the 1D losses. A 1D scroll volute model has been added to the single passage CFD results; good agreement with the test data is achieved. Short-comings in the existing 1D loss models are identified as a result of the comparisons with 3D CFD losses. Further comparisons are drawn between the predicted 1D data, 3D CFD simulation results, and the test data using a nondimensional method to highlight where the current errors exist in the 1D prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several one-dimensional design methods have been used to predict the off-design performance of three modern centrifugal compressors for automotive turbocharging. The three methods used are single-zone, two-zone, and a more recent statistical method. The predicted results from each method are compared against empirical data taken from standard hot gas stand tests for each turbocharger. Each of the automotive turbochargers considered in this study have notably different geometries and are of varying application. Due to the non-adiabatic test conditions, the empirical data has been corrected for the effect of heat transfer to ensure comparability with the 1D models. Each method is evaluated for usability and accuracy in both pressure ratio and efficiency prediction. The paper presents an insight into the limitations of each of these models when applied to one-dimensional automotive turbocharger design, and proposes that a corrected single-zone modelling approach has the greatest potential for further development, whilst the statistical method could be immediately introduced to a design process where design variations are limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an investigation of various shroud bleed slot configurations of a centrifugal compressor using CFD with a manual multi-block structured grid generation method. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400hp. The baseline numerical model has been developed and validated against experimental performance measurements. The influence of the bleed slot flow field on a range of operating conditions between surge and choke has been analysed in detail. The impact of the returning bleed flow on the incidence at the impeller blade leading edge due to its mixing with the main through-flow has also been studied. From the baseline geometry, a number of modifications to the bleed slot width have been proposed, and a detailed comparison of the flow characteristics performed. The impact of slot variations on the inlet incidence angle has been investigated, highlighting the improvement in surge and choked flow capability. Along with this, the influence of the bleed slot on stabilizing the blade passage flow by the suction of the tip and over-tip vortex flow by the slot has been considered near surge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An environment has been created for the optimisation of aerofoil profiles with inclusion of small surface features. For TS wave dominated flows, the paper examines the consequences of the addition of a depression on the aerodynamic optimisation of an NLF aerofoil, and describes the geometry definition fidelity and optimisation algorithm employed in the development process. The variables that define the depression for this optimisation investigation have been fixed, however a preliminary study is presented demonstrating the sensitivity of the flow to the depression characteristics. Solutions to the optimisation problem are then presented using both gradient-based and genetic algorithm techniques, and for accurate representation of the inclusion of small surface perturbations it is concluded that a global optimisation method is required for this type of aerofoil optimisation task due to the nature of the response surface generated. When dealing with surface features, changes in the transition onset are likely to be of a non-linear nature so it is highly critical to have an optimisation algorithm that is robust, suggesting that for this framework, gradient-based methods alone are not suited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the development of a new single-zone meanline modelling technique, benchmarking of the technique and the modelling methods used during its development are presented. The new meanline model had been developed using the results of three automotive turbocharger centrifugal compressors, and single passage CFD models based on their geometry.

The target of the current study was to test the new meanline modelling method on two new centrifugal compressor stages, again from the automotive turbocharger variety. Furthermore the single passage CFD modelling method used in the previous study would be again employed here and also benchmarked.

The benchmarking was twofold; firstly test the overall performance prediction accuracy of the single-zone meanline model. Secondly, test the detailed performance estimation of the CFD model using detailed interstage static pressure tappings.

The final component of this study exposed the weaknesses in the current modelling methods used (explicitly during this study). The non-axisymmetric flow field at the leading and trailing edges for the two compressors was measured and is presented here for the complete compressor map, highlighting the distortion relative to the tongue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height
compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of ENaC have therapeutic potential in CF airways to reduce the hyperstimulated sodium and fluid absorption to levels which can restore airways hydration.

Objectives: To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function.

Methods: Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy) and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured by LDH assay.

Measurements and Results: QUB-TL1 inhibits extracellularly-located CAPs, including prostasin, matriptase and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells (AECs). QUB-TL1-mediated CAPs inhibition results in diminished ENaC-mediated Na+ absorption in CF AECs due to internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A induced cell death.

Conclusions: QUB-TL1 corrects aberrant CAP activities providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CFTR mutation.