68 resultados para Joy.
Resumo:
Coeliac disease is a common chronic inflammatory enteropathy characterized by villous atrophy and crypt hyperplasia in the small intestine. The mechanism of the intestinal damage in coeliac disease remains unclear. Glucagon-like peptide (GLP)-2 is an enterotrophic peptide that causes crypt hyperplasia and intestinal cell proliferation. We postulate that GLP-2 may be involved in the mucosal changes found in coeliac disease.
Resumo:
Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO.
Resumo:
Competition law is fun. As a noted expert consultant told one of us:'Don't tell my spouse, but I'd work on these cases for the sheer joy of it.'The facts, the issues, the window into economies and legal systems--it does not get much better than this. Not surprisingly,
then, competition law academic seminars are also fun. At their best, they present opportunities for energized students to engage with scholars and wrestle with cutting edge issues in this particularly interesting field.
Resumo:
SIGNIFICANCE:
Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules.
RECENT ADVANCES:
Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes.
CRITICAL ISSUES:
Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms.
FUTURE DIRECTIONS:
An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.
Resumo:
Caring for someone with dementia can be demanding, particularly for spouses living with the care recipient. The main goal of this study was to clarify differences in the experience of caregivers who were husbands and wives with respect to burden, health, healthy behaviors, presence of difficult care recipient behaviors, social supports, and the quality of the premorbid relationship. The results of this study support research demonstrating a difference between the caregiving experiences of women and men. It is becoming increasingly apparent that female gender is a marker that places them at increased risk of high burden and less support.
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
African coastal regions are expected to experience the highest rates of population growth in coming decades. Fresh groundwater resources in the coastal zone of East Africa (EA) are highly vulnerable to seawater intrusion. Increasing water demand is leading to unsustainable and ill-planned well drilling and abstraction. Wells supplying domestic, industrial and agricultural needs are or have become, in many areas, too saline for use. Climate change, including weather changes and sea level rise, is expected to exacerbate this problem. The multiplicity of physical, demographic and socio-economic driving factors makes this a very challenging issue for management. At present the state and probable evolution of coastal aquifers in EA are not well documented. The UPGro project 'Towards groundwater security in coastal East Africa' brings together teams from Kenya, Tanzania, Comoros Islands and Europe to address this knowledge gap. An integrative multidisciplinary approach, combining the expertise of hydrogeologists, hydrologists and social scientists, is investigating selected sites along the coastal zone in each country. Hydrogeologic observatories have been established in different geologic and climatic settings representative of the coastal EA region, where focussed research will identify the current status of groundwater and identify future threats based on projected demographic and climate change scenarios. Researchers are also engaging with end users as well as local community and stakeholder groups in each area in order to understanding the issues most affecting the communities and searching sustainable strategies for addressing these.
Resumo:
iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted values, indicating dose-averaged LET as a suitable parameter for biological effectiveness. Data have also been used to validate a RBE parameterized model.
Resumo:
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis.
Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5 Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5–5 Gy) and low doses (<0.5 Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity.
This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Resumo:
The Faroe-Shetland channel is situated in the main path of the inflow of warm North Atlantic surface water to the Nordic seas and further provides an escape route for the cold Norwegian Sea Deep Water. AMS 14C dates of planktonic foraminifera covering Marine Isotope Stage 3 from two cores in the Faroe-Shetland channel will be used to trace past variability of the Atlantic Meridional Overturning Circulation (AMOC). The reservoir age R shows considerable variability ranging between 50 to 2750 14C years. In particular high R values are observed during Heinrich event 4 (H4) with values around 1550 14C years and during the Laschamp magnetic excursion with R values as high as 2700 14C years. The period between Greenland interstadial 8 (GI8) and GI5 show highly variable R values with interstadial R values around 500 – 650 14C years, i.e. slightly higher than ‘normal’, whereas stadials show either significantly higher or lower R values. From GI5 towards the Last Glacial Maximum R values are generally around 1000 14C years or higher. Using magnetic susceptibility, IRD and δ13C and δ18O values measured on the planktic foraminifera species Neogloboquadrina pachyderma, we compare the observed R variability with reconstructed changes in the Atlantic Meridional Overturning Circulation (AMOC). Furthermore a climate model of intermediate complexity (GENIE) including 14C is used as conceptual tool for identifying oceanographic configuration explaining the observed R variability.