52 resultados para Integer Non-Linear Optimization
Resumo:
In the pursuit of producing high quality, low-cost composite aircraft structures, out-of-autoclave manufacturing processes for textile reinforcements are being simulated with increasing accuracy. This paper focuses on the continuum-based, finite element modelling of textile composites as they deform during the draping process. A non-orthogonal constitutive model tracks yarn orientations within a material subroutine developed for Abaqus/Explicit, resulting in the realistic determination of fabric shearing and material draw-in. Supplementary material characterisation was experimentally performed in order to define the tensile and non-linear shear behaviour accurately. The validity of the finite element model has been studied through comparison with similar research in the field and the experimental lay-up of carbon fibre textile reinforcement over a tool with double curvature geometry, showing good agreement.
Resumo:
This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Resumo:
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
Resumo:
Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.
Resumo:
A simple yet efficient harmony search (HS) method with a new pitch adjustment rule (NPAHS) is proposed for dynamic economic dispatch (DED) of electrical power systems, a large-scale non-linear real time optimization problem imposed by a number of complex constraints. The new pitch adjustment rule is based on the perturbation information and the mean value of the harmony memory, which is simple to implement and helps to enhance solution quality and convergence speed. A new constraint handling technique is also developed to effectively handle various constraints in the DED problem, and the violation of ramp rate limits between the first and last scheduling intervals that is often ignored by existing approaches for DED problems is effectively eliminated. To validate the effectiveness, the NPAHS is first tested on 10 popular benchmark functions with 100 dimensions, in comparison with four HS variants and five state-of-the-art evolutionary algorithms. Then, NPAHS is used to solve three 24-h DED systems with 5, 15 and 54 units, which consider the valve point effects, transmission loss, emission and prohibited operating zones. Simulation results on all these systems show the scalability and superiority of the proposed NPAHS on various large scale problems.