66 resultados para Infrared emission spectra
Resumo:
R-matrix calculations of electron impact excitation rates in N- like S x are used to derive theoretical emission-line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 189-265 Angstrom wavelength range. A comparison of these with observational data for solar flares and active regions, obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab and the Solar EUV Rocket Telescope and Spectrograph, reveals that many of the S x lines in the spectra are badly blended with emission features from other species. However, the intensity ratios I(228.70 Angstrom)/I(264.24 Angstrom) and I(228.70 Angstrom)/I(259.49 Angstrom) are found to provide useful electron density diagnostics for flares, although the latter cannot be employed for active regions, because of blending of the 259.49 Angstrom line with an unidentified transition in these solar features.
Resumo:
Theoretical electron density sensitive emission line ratios involving a total of eleven 2s(2)2p(2)-2s2p(3) transitions in S XI between 187 and 292 Angstrom are presented. A comparison of these with solar active region observations obtained during rocket flights by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals generally good agreement between theory and experiment. However, the 186.87 Angstrom line is masked by fairly strong Fe XII emission at the same wavelength, while 239.83 Angstrom is blended with an unknown feature, and 285.58 Angstrom is blended with possibly N IV 285.56 Angstrom. In addition, the 191.23 Angstrom line appears to be more seriously blended with an Fe XIII feature than previously believed. The presence of several new S XI lines is confirmed in the SERTS spectra, at wavelengths of 188.66, 247.14 and 291.59 Angstrom, in excellent agreement with laboratory measurements. In particular, the detection of the 2s(2)2p(2) P- 3(1) -2s2p(3) P-3(0,1) transitions at 242.91 Angstrom is the first time (to our knowledge) that this feature has been identified in the solar spectrum. The potential usefulness of the S XI line ratios as electron density diagnostics for the solar transition region and corona is briefly discussed.
Resumo:
Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 angstrom wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 angstrom), performed using the most recent Fe XV atomic physics calculations in conjunction with a chianti synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e.similar to 0.1 angstrom). An exception is the intensity ratio I(3s3p P-3(2)-3p(2) P-3(1))/I(3s3p P-3(2)-3p(2) D-1(2))=I(321.8 angstrom)/I(327.0 angstrom), which appears to provide good estimates of the electron density at this spectral resolution.
Resumo:
Aims. Infrared and optical photometric and spectroscopic observations of the symbiotic nova RR Tel are used to study the effects and properties of dust in symbiotic binaries containing a cool Mira component, as well as showing "obscuration events" of increased absorption, which are typical for such Miras. Methods. A set of photometric observations of the symbiotic nova RR Tel in different wavelength bands - visual from 1949 to 2002 and near-infrared (JHKL) from 1975 to 2002 - are presented. The variability due to the normal Mira pulsation was removed from the JHKL data, which were then compared with the American Association of Variable Star Observers' (AAVSO) visual light curve. The changes of the Fe II emission line fluxes during the 1996-2000 obscuration episode were studied in the optical spectra taken with the Anglo-Australian telescope. Results. We discuss the three periods during which the Mira component was heavily obscured by dust as observed in the different wavelength bands. A change in the correlations of J with other infrared magnitudes was observed with the colour becoming redder after JD 2 446 600. Generally, J-K was comparable, while K-L was larger than typical values for singleMiras. A distance estimate of 2.5 kpc, based on the IR data, is given. A larger flux decrease for the permitted than for the forbidden Fe II lines, during the obscuration episode studied, has been found. There is no evidence for other correlations with line properties, in particular with wavelength, which suggests obscuration due to separate optically thick clouds in the outer layers. Conclusions.
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
Resumo:
Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.
Resumo:
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2, and GRS 1915+105. The slopes of the spectra are shallower than what is expected from a standard steady state accretion disk, and can be explained if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4 mu m are 1.3% +/- 0.10% and 5.4% +/- 0.7%, respectively, which is greater than the polarization level at 1.65 mu m. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS 1915+105 the observed polarization, although high (5.0% +/- 1.2% at 2.4 mu m), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step toward probing the ordering, alignment, and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
Resumo:
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å.