108 resultados para Implant-supported dentures
Resumo:
A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.
Resumo:
Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.
Resumo:
A happy medium: Volumetric adsorption of carbon monoxide at 308 K and UHR-HAADF-STEM, HREM, and computer modeling techniques were compared. Experimental CO/Au ratios at saturation coverage for two supported gold catalysts were shown to fit very well the predictions of a nanostructural model that considers CO adsorption on gold sites with coordination numbers of less than eight.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
Background There has been a significant reduction in the number of people with severe mental illness who spend extended periods in long-stay hospitals. District health authorities, local authorities, housing associations and voluntary organisations are jointly expected to provide support for people with severe mental disorder/s. This 'support' may well involve some kind of special housing. Objectives To determine the effects of supported housing schemes compared with outreach support schemes or 'standard care' for people with severe mental disorder/s living in the community. Search methods For the 2006 update we searched the Cochrane Schizophrenia Group Trials Register (April 2006) and the Cochrane Central Register of Controlled Trials (CENTRAL, 2006 Issue 2). Selection criteria We included all relevant randomised, or quasi-randomised, trials dealing with people with 'severe mental disorder/s' allocated to supported housing, compared with outreach support schemes or standard care. We focused on outcomes of service utilisation, mental state, satisfaction with care, social functioning, quality of life and economic data. Data collection and analysis We reliably selected studies, quality rated them and undertook data extraction. For dichotomous data, we would have estimated relative risks (RR), with the 95% confidence intervals (CI). Where possible, we would have calculated the number needed to treat statistic (NNT). We would have carried out analysis by intention-to-treat and would have summated normal continuous data using the weighted mean difference (WMD). We would have presented scale data for only those tools that had attained pre-specified levels of quality and undertaken tests for heterogeneity and publication bias. Main results Although 139 citations were acquired from the searches, no study met the inclusion criteria. Authors' conclusions Dedicated schemes whereby people with severe mental illness are located within one site or building with assistance from professional workers have potential for great benefit as they provide a 'safe haven' for people in need of stability and support. This, however, may be at the risk of increasing dependence on professionals and prolonging exclusion from the community. Whether or not the benefits outweigh the risks can only be a matter of opinion in the absence of reliable evidence. There is an urgent need to investigate the effects of supported housing on people with severe mental illness within a randomised trial.
Resumo:
High activity and stability during oxidation of methanol under the relatively anode environment are two main evaluation criterias for an effective anode electrocatalyst in direct methanol fuel cell (DMFC). Mesoporous WC samples with hollow structure were prepared by gas-solid reaction at the atmosphere of CH(4)/H(2) by using airflow spray dried ammonium metatungstate (AMT). The platinum supported on this material by impregnation-vapor phase deoxidation method served as a less expensive electro anode catalyst. XRD and SEM results showed that Pt particles were well dispersed on the surface of WC. The results showed that the Pt/WC-PME exhibited an attractive catalytic activity, and methanol oxidation process in Pt/WC-PME is affected by liquid-phase mass transfer. The results also indicated that the oxidation can be improved by raising temperatures.