63 resultados para Hydraulic Excavator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel economy has become an important consideration in forklift truck design, particularly in Europe. A simulation of the fuel consumption and performance of a forklift truck has been developed, validated and subsequently used to determine the energy consumed by individual powertrain components during drive cycles.
The truck used in this study has a rated lifting capacity of 2500kg, and is powered by a 2.6 litre naturally aspirated diesel engine with a fuel pump containing a mechanical variable-speed governor. The drivetrain consisted of a torque convertor, hydraulic clutch and single speed transmission.
AVL Cruise was used to simulate the vehicle powertrain, with coupled Mathworks Simulink models used to simulate the hydraulic and control systems and governor. The vehicle has been simulated on several performance and fuel consumption drive cycles with the main focus being the VDI 2198 fuel consumption drive cycle.
To validate the model, a truck was instrumented and measurements taken to compare the performance and instantaneous fuel consumption to simulated values. The fuel injector pump was modified and calibrated to enable instantaneous fuel flow to be measured.
The model has been validated to within acceptable limits and has been used to investigate the effect four different torque converters have on the fuel consumption and performance of the forklift truck. The study demonstrates how the model can be used to compare the fuel consumption and performance trade-offs when selecting drivetrain components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth pressure balanced (EPB) full face tunneling machines have experienced a remarkable increase in the number of applications throughout the world due to both mechanical developments and a more effective use of additives to condition the ground. Conditioning modifies the mechanical and hydraulic properties of a soil by making it suitable for the pressure control in the bulk chamber and extraction with the screw conveyor. The extraction system plays a fundamental role during the EPB operations particularly for a correct application of the face pressure. Despite the extensive use of the EPB technique, little knowledge exists concerning the understanding of the behavior of conditioned soil, particularly for noncohesive ground (sand and gravel). This paper presents and describes a prototype laboratory device, which simulates the extraction of the ground from a pressurized tank with a screw conveyor. The results of a preliminary test program carried out on a medium sized sand show that the prototype device is efficient in verifying the effects of foam for an optimal use in EPB conditioning. © 2007 ASCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas extracted from hydraulically fractured shale formations potentially has a big impact on the global energy landscape. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct realizations of numerical modeling simulations to assess fluid flow and chloride transport from a synthetic Bowland Shale over a period of 11,000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. Chloride mass exchange between fractures and the rock matrix was fully accounted for in the model. The assessment was carried out to investigate fluid and chloride mass fluxes before, during, and after hydraulic fracturing of the Bowland Shale. Impacts of the upward fracture height and aperture, as well as hydraulic conductivity of the multilayered bedrock system, are also included this assessment. This modeling revealed that the hydraulically fractured Bowland Shale is unlikely to pose a risk to its overlying groundwater quality when the induced fracture aperture is ≤200 µm. With the fracture aperture ≥1000 µm, the upward chloride flux becomes very sensitive to the upward fracture height growth and hydraulic conductivity of the multilayered bedrock system. In the extremely unlikely event of the upward fracture growth directly connecting the shale formation to the overlying Sherwood Sandstone aquifer with the fracture aperture ≥1000 µm, the upward chloride mass flux could potentially pose risks to the overlying aquifer in 100 years. The model study also revealed that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, reducing further upward flux toward the overlying aquifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiments in a wide flume, a three-dimensional (3D) computational fluid dynamics simulation, and a two-dimensional depth-averaged computation. Agreement between the experiments and the 3D modeling is shown to be good, including the prediction of an asymmetric Coandă effect. One aim is to determine the distance downstream at which depth-averaged modeling provides a reasonable prediction; this is shown to be approximately 20 tube diameters downstream of the barrage. Upstream of this, the depth-averaged modeling inaccurately predicts water level, bed shear, and the 3D flow field. The 3D model shows that bed shear stress can be markedly magnified near the barrage, particularly where the jets become attached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or to assess material behaviour. In addition to analysis of structures using scale models, many structural engineers are aware to some extent of cyclic and shake-table test methods, but less so of ‘hybrid testing’. The latter is a combination of physical testing (e.g. hydraulic
actuators) and computational modelling (e.g. finite element modelling). Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is more cost-effective in comparison to shake-table testing. This article aims to provide the reader with a basic understanding of the hybrid test method, including its contextual development and potential as a dynamic testing technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying groundwater contributions to baseflowforms an essential part of surfacewater body characterisation. The Gortinlieve catchment (5 km2) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite/montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently formthe chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance
of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a consequence of climate change there is now a more frequent occurrence of extreme rainfall events where, with higher rates of urbanisation, the built environment has become increasingly affected by flooding.. This is of particular importance in relation to the stability of bridge structures that span rivers and canals etc. In November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The rainfall was logged as the highest level of rainfall ever recorded within the UK, and as a direct consequence, unprecedented flooding occurred in Cumbria. This flooding led to the collapse of three road bridges which were generally 19th century masonry arch bridges, with relatively shallow foundations. In the UK, knowledge of the combined effect of bridge scouring and inundation has been not been particularly widely studied. Research carried out by Hamill et al [1] considered the hydraulic analysis of single arch bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to scouring. Prior to this, Bierry and Delleur [2] produced a classic paper in predicting the discharge downstream of an inundated arch, focussing on predicting afflux as opposed to bridge scour. Further work on backwater effects was carried out by Martin-Vide & Prio [3] in semi-circular arch bridges. Both pressurized and free-surface flows at the bridge were investigated. Flows on a mobile bed in clear-water conditions were compared to those with a rigid bed, but no predictive equation for scour under pressurised conditions was considered. This paper will present initial findings from an experimental investigation into the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of clear water scour, for a series of flows and model spans. The data will be presented, where results will be correlated to the most recent predictive equations that are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a consequence of increased levels of flooding, largely attributable to urbanization of watersheds (and perhaps climate change, more frequent extreme rainfall events are occurring and threatening existing critical infrastructure. Many of which are short-span bridges over relatively small waterways (e.g., small rivers, streams and canals). Whilst these short-span bridges were designed, often many years ago, to pass relatively minor the then standard return-period floods, in recenttimes the failure incidence of such short-span bridges has been noticeably increasing. This is suggestive of insufficient hydraulic capacity or alternative failure mechanism not envisaged at the time of design e.g. foundation scour or undermining. This paper presen ts, and draws lessons, from bridge failures in Ireland and the USA. For example, in November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The resulting flooding led to the collapse of three UK bridges that were generally 19th century masonry arch bridges, withrelatively shallow foundations. Parallel failure events have been observed in the USA. To date, knowledge of the combined effect of waterway erosion, bridge submergence, and geotechnical collapse has not been adequately studied. Recent research carried out considered the hydraulic analysis of short span bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to erosive coupling of hydraulic and geotechnical factors. Some work has been done to predict the discharge downstream of an inundated arch, focusing onpredicting afflux, as opposed to bridge scour, under both pressurized and free-surface flows, but no ! predictive equation for scour under pressurized conditions was ever considered. The case studies this paper presents will be augmented by the initial findings from the laboratory experiments investigating the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of consequent scour, for a series of flows and model spans. The data will be presented and correlated to the most recent predictive equations for submerged contraction and abutment scour. The accuracy of these equations is examined, and the findings used as a basis for developing further studies in relation to short span bridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper contributes to the understanding of lime-mortar masonry strength and deformation (which determine durability and allowable stresses/stiffness in design codes) by measuring the mechanical properties of brick bound with lime and lime-cement mortars. Based on the regression analysis of experimental results, models to estimate lime-mortar masonry compressive strength are proposed (less accurate for hydrated lime (CL90s) masonry due to the disparity between mortar and brick strengths). Also, three relationships between masonry elastic modulus and its compressive strength are proposed for cement-lime; hydraulic lime (NHL3.5 and 5); and hydrated/feebly hydraulic lime masonries respectively.

Disagreement between the experimental results and former mathematical prediction models (proposed primarily for cement masonry) is caused by a lack of provision for the significant deformation of lime masonry and the relative changes in strength and stiffness between mortar and brick over time (at 6 months and 1 year, the NHL 3.5 and 5 mortars are often stronger than the brick). Eurocode 6 provided the best predictions for the compressive strength of lime and cement-lime masonry based on the strength of their components. All models vastly overestimated the strength of CL90s masonry at 28 days however, Eurocode 6 became an accurate predictor after 6 months, when the mortar had acquired most of its final strength and stiffness.

The experimental results agreed with former stress-strain curves. It was evidenced that mortar strongly impacts masonry deformation, and that the masonry stress/strain relationship becomes increasingly non-linear as mortar strength lowers. It was also noted that, the influence of masonry stiffness on its compressive strength becomes smaller as the mortar hydraulicity increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigated the problem of confined flow under dams and water retaining structuresusing stochastic modelling. The approach advocated in the study combined a finite elementsmethod based on the equation governing the dynamics of incompressible fluid flow through aporous medium with a random field generator that generates random hydraulic conductivity basedon lognormal probability distribution. The resulting model was then used to analyse confined flowunder a hydraulic structure. Cases for a structure provided with cutoff wall and when the wall didnot exist were both tested. Various statistical parameters that reflected different degrees ofheterogeneity were examined and the changes in the mean seepage flow, the mean uplift forceand the mean exit gradient observed under the structure were analysed. Results reveal that underheterogeneous conditions, the reduction made by the sheetpile in the uplift force and exit hydraulicgradient may be underestimated when deterministic solutions are used.