94 resultados para Hybridized Evolutionary Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purpose of equalisation of rapidly time variant multipath channels, we derive a novel adaptive algorithm, the amplitude banded LMS (ABLMS); which implements a nonlinear adaptation based on a coefficient matrix. Then we develop the: ABLMS algorithm as the adaptation procedure for a linear transversal equaliser (LTE) and a decision feedback equaliser (DFE) where a parallel adaptation scheme is deployed. Computer simulations demonstrate that with a small increase of computational complexity, the ABLMS based parallel equalisers provide a significant improvement related to the conventional LMS DFE and the LMS LTE in the case of a second order Markov communication channel model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to Marshall’s agglomeration theory, Krugman’s New Economic Geography models, and Porter’s cluster policies, firms should receive increasing returns from a trinity of agglomeration economies: a local pool of skilled labour, local supplier linkages, and local knowledge spillovers. Recent evolutionary theories suggest that whether agglomeration economies generate increasing returns or diminishing returns depends on time, and especially the evolution of the industry life cycle. At the start of the twenty-first century, we re-examine Marshall’s trinity of agglomeration economies in the city-region where he discovered them. The econometric results from our multivariate regression models are the polar opposite of Marshall’s. During the later stages of the industry life cycle, Marshall’s agglomeration economies decrease the economic performance of firms and create widespread diminishing returns for the economic development of the city-region, which has evolved to become one of the poorest city-regions in Europe.